Lyapunov Time for 2D Lagrangian Visualization

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Many concepts in computational flow visualization operate in the Lagrangian frame—they involve the integration of trajectories. A problem inherent to these approaches is the choice of an appropriate time length for the integration of these curves. While for some applications the choice of such a finite time length is straightforward, it represents in most other applications a parameter that needs to be explored and well-chosen. This becomes even more difficult in situations where different regions of the vector field require different time scopes. In this chapter, we introduce Lyapunov time for this purpose. Lyapunov time, originally defined for predictability purposes, represents the time over which a trajectory is predictable, i.e., not dominated by error. We employ this concept for steering the integration time in direct visualization by trajectories, and for derived representations such as line integral convolution and delocalized quantities. This not only provides significant visualizations related to time-dependent vector field topology, but at the same time incorporates uncertainty into trajectory-based visualization.

Notes

Acknowledgements

The author would like to thank the German Research Foundation (DFG) for financial support within the Cluster of Excellence in Simulation Technology (EXC 310).

References

  1. 1.
    Ament, M., Frey, S., Sadlo, F., Ertl, T., Weiskopf, D.: GPU-based two-dimensional flow simulation steering using coherent structures. In: Proceedings of Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering (2011)Google Scholar
  2. 2.
    Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A 30, 1–26 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bachthaler, S., Sadlo, F., Dachsbacher, C., Weiskopf, D.: Space-time visualization of dynamics in Lagrangian coherent structures of time-dependent 2D vector fields. In: Proceedings of International Conference on Information Visualization Theory and Applications, pp. 573–583 (2012)Google Scholar
  4. 4.
    Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., Weiskopf, D.: Magnetic flux topology of 2D point dipoles. Comput. Graph. Forum 31(3), 955–964 (2012)CrossRefGoogle Scholar
  5. 5.
    Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, pp. 263–270. ACM, New York (1993)Google Scholar
  6. 6.
    Eberly, D.: Ridges in Image and Data Analysis. Computational Imaging and Vision. Kluwer Academic, Boston (1996)CrossRefMATHGoogle Scholar
  7. 7.
    Fuchs, R., Peikert, R., Sadlo, F., Alsallakh, B., Gröller, M.E.: Delocalized unsteady vortex region detectors. In: Proceedings of International Workshop on Vision, Modeling and Visualization, pp. 81–90 (2008)Google Scholar
  8. 8.
    Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Graph. 13(6), 1464–1471 (2007)CrossRefGoogle Scholar
  9. 9.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proceedings of IEEE Visualization, vol. 408, pp. 33–40 (1991)Google Scholar
  10. 10.
    Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10(1), 99–108 (2000)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149(4), 248–277 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240(7), 574–598 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)CrossRefGoogle Scholar
  14. 14.
    Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput. Graph. Appl. 11(3), 36–46 (1991)CrossRefGoogle Scholar
  15. 15.
    Hlawatsch, M., Vollrath, J.E., Sadlo, F., Weiskopf, D.: Coherent structures of characteristic curves in symmetric second order tensor fields. IEEE Trans. Vis. Comput. Graph. 17(6), 781–794 (2011)CrossRefGoogle Scholar
  16. 16.
    Ide, K., Small, D., Wiggins, S.: Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets. Nonlinear Process. Geophys. 9(3/4), 237–263 (2002)CrossRefGoogle Scholar
  17. 17.
    Kasten, J., Petz, C., Hotz, I., Noack, B.R., Hege, H.-C.: Localized finite-time Lyapunov exponent for unsteady flow analysis. In: Proceedings of International Workshop on Vision, Modeling and Visualization, pp. 265–274 (2009)Google Scholar
  18. 18.
    Löffelmann, H., Doleisch, H., Gröller, E.: Visualizing dynamical systems near critical points. In: Proceedings of Spring Conference on Computer Graphics and its Applications, pp. 175–184 (1998)Google Scholar
  19. 19.
    Mancho, A.M., Small, D., Wiggins, S., Ide, K.: Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields. Physica D 182, 188–222 (2003)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Panagiotidis, A., Kauker, D., Sadlo, F., Ertl, T.: Distributed computation and large-scale visualization in heterogeneous compute environments. In: Proceedings of 11th International Symposium on Parallel and Distributed Computing, pp. 87–94 (2012)Google Scholar
  21. 21.
    Peikert, R., Sadlo, F.: Topology-guided visualization of constrained vector fields. In: Topology-Based Methods in Visualization, pp. 21–34. Springer, Berlin (2007)Google Scholar
  22. 22.
    Peikert, R., Sadlo, F.: Visualization methods for vortex rings and vortex breakdown bubbles. In: Proceedings of EuroVis, pp. 211–218 (2007)Google Scholar
  23. 23.
    Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech. 19, 125–155 (1987)CrossRefGoogle Scholar
  24. 24.
    Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matkovic, K., Hauser, H.: The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum 30(6), 1789–1811 (2011)CrossRefGoogle Scholar
  25. 25.
    Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(6), 1456–1463 (2007)CrossRefGoogle Scholar
  26. 26.
    Sadlo, F., Peikert, R.: Visualizing Lagrangian coherent structures and comparison to vector field topology. In: Topology-Based Methods in Visualization II, pp. 15–30. Springer, Berlin (2009)Google Scholar
  27. 27.
    Sadlo, F., Weiskopf, D.: Time-dependent 2-D vector field topology: an approach inspired by Lagrangian coherent structures. Comput. Graph. Forum 29(1), 88–100 (2010)CrossRefGoogle Scholar
  28. 28.
    Sadlo, F., Üffinger, M., Ertl, T., Weiskopf, D.: On the finite-time scope for computing Lagrangian coherent structures from Lyapunov exponents. In: Topological Methods in Data Analysis and Visualization II, pp. 269–281. Springer, Berlin (2012)Google Scholar
  29. 29.
    Sadlo, F., Karch, G.K., Ertl, T.: Topological features in time-dependent advection-diffusion flow. In: Topological Methods in Data Analysis and Visualization III, pp. 217–231. Springer, Berlin (2014)Google Scholar
  30. 30.
    Sanderson, A., Chen, G., Tricoche, X., Pugmire, D., Kruger, S., Breslau, J.: Analysis of recurrent patterns in toroidal magnetic fields. IEEE Trans. Vis. Comput. Graph. 16(6), 1431–1440 (2010)CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Theisel, H., Weinkauf, T., Hege, H.-C., Seidel, H.-P.: Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of IEEE Visualization, pp. 225–232 (2003)Google Scholar
  34. 34.
    Tricoche, X., Garth, C., Sanderson, A., Joy, K.: Visualizing invariant manifolds in area-preserving maps. In: Topological Methods in Data Analysis and Visualization II, pp. 109–124. Springer, Berlin (2012)Google Scholar
  35. 35.
    Tricoche, X., Hlawitschka, M., Barakat, S., Garth, C.: Beyond topology: a Lagrangian metaphor to visualize the structure of 3D tensor fields. In: New Developments in the Visualization and Processing of Tensor Fields. Springer, Berlin (2012)Google Scholar
  36. 36.
    Üffinger, M., Sadlo, F., Kirby, M., Hansen, C., Ertl, T.: FTLE computation beyond first-order approximation. In: Short Paper Proceedings of Eurographics, pp. 61–64 (2012)Google Scholar
  37. 37.
    Üffinger, M., Sadlo, F., Ertl, T.: A time-dependent vector field topology based on streak surfaces. IEEE Trans. Vis. Comput. Graph. 19(3), 379–392 (2013)CrossRefGoogle Scholar
  38. 38.
    Wu, K., Liu, Z., Zhang, S., Moorhead, R.J.: Topology-aware evenly spaced streamline placement. IEEE Trans. Vis. Comput. Graph. 16(5), 791–801 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations