Advertisement

Statistical Analysis of the Chaos-Driven Elliptic Curve Pseudo-random Number Generators

  • Omar Reyad
  • Zbigniew Kotulski
Part of the Communications in Computer and Information Science book series (CCIS, volume 448)

Abstract

In this paper, after a short survey describing several known constructions recommended for generating sequences of pseudo-random numbers based on elliptic curves over finite fields of prime order, we propose a method of generating such sequences of points with algorithms driven by a chaotic map. Our construction improves randomness of the sequence generated since it combines good statistical properties of an ECPRNG (Elliptic Curve Pseudo-Random Number Generator) and a CPRNG (Chaotic Pseudo-Random Number Generator). Theoretical analysis shows that periods of the proposed constructions are longer than in the case of the ECPRNG without modulation by a chaotic map. In the second part of the paper we present numerical analysis of the proposed construction to obtain optimal parameters of the generator. We also use some tests from the NIST’s SP 800-22 Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications to analyze statistical properties of the proposed constructions for different values of parameters.

Keywords

elliptic curve cryptography random number generator chaotic maps statistical testing of PRNG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menezes, A.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic, Dordrecht (1993)CrossRefMATHGoogle Scholar
  2. 2.
    Lee, L.P., Wong, K.W.: A random number generator based on elliptic curve operations. Journal of Computers and Mathematics with Applications 47, 217–226 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Jao, D., Jetchev, D., Venkatesan, R.: On the bits of elliptic curve Diffie-Hellman keys. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 33–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Kaliski, B.S.: One-way permutations on elliptic curves. Journal of Cryptology 3, 187–199 (1991-1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Caragiu, M., Johns, R.A., Gieseler, J.: Quasi-random structures from elliptic curves. J. Algebra, Number Theory Appl. 6, 561–571 (2006)MATHMathSciNetGoogle Scholar
  6. 6.
    Gong, G., Berson, T.A., Stinson, D.R.: Elliptic curve pseudorandom sequence generators. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, p. 34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 127–140. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Biham, E.: Cryptanalysis of the chaotic-map cryptosystem suggested at EUROCRYPT’91. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 532–534. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Kotulski, Z., Szczepański, J.: Discrete chaotic cryptography. Annalen der Physik 6(5), 381–394 (1997)CrossRefMATHGoogle Scholar
  10. 10.
    Kohda, T., Tsuneda, A.: Statistic of chaotic binary sequences. IEEE Transactions on Information Theory 43(1), 104–112 (1997)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kotulski, Z., Szczepański, J., Górski, K., Paszkiewicz, A., Gorska, A.: On constructive approach to chaotic pseudorandom number generators. In: Proceedings RCMIS 2000, Zegrze, October 4-6, vol. 1, pp. 191–203 (2000)Google Scholar
  12. 12.
    Reyad, O., Kotulski, Z.: On Pseudo-random Number Generators Using Elliptic Curves and Chaotic Systems. Applied Mathematics & Information Sciences 9(1) (2015) (accepted paper)Google Scholar
  13. 13.
    Cornfeld, L.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Springer, Berlin (1982)CrossRefMATHGoogle Scholar
  14. 14.
    Kotulski, Z., Szczepański, J.: Pseudorandom number generators based on chaotic dynamical systems. Open Systems & Information Dynamics 8(2), 137–146 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    FIPS 140-2: Security Requirements for Cryptographic Modules, NIST (2000)Google Scholar
  16. 16.
    Rukhin, A., Soto, J., Nechvatal, J., et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22 with revisions (May 15, 2001)Google Scholar
  17. 17.
    Knuth, D.E.: The Art of Computer Programming - Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1981)Google Scholar
  18. 18.
    Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Math. Soc., Lecture Note Series, vol. 265. Cambridge Univ. Press (1999)Google Scholar
  19. 19.
    Silverman, J.H.: The arithmetic of elliptic curves. Springer, Berlin (1995)Google Scholar
  20. 20.
    Hallgren, S.: Linear congruential generators over elliptic curves. Preprint CS-94-143, Dept. of Comp. Sci., Cornegie Mellon Univ., 1–10 (1994)Google Scholar
  21. 21.
    Shparlinski, I.E.: Pseudorandom number generators from elliptic curves. In: Affine Algebraic Geometry, pp. 121–142. Amer. Math. Soc. (2009)Google Scholar
  22. 22.
    Amigo, J.M., Kocarev, L., Szczepański, J.: Theory and Practice of Chaotic Cryptography. Physics Letters A 366(3), 211–216 (2007)CrossRefMATHGoogle Scholar
  23. 23.
    Phatak, S.C., Rao, S.S.: Logistic map: A possible random-number generator. Physical Review E 51(4), 3670–3678 (1995)CrossRefGoogle Scholar
  24. 24.
    Liao, X.F., Li, X.M., Peng, J., et al.: A digital secure image communication scheme based on the chaotic Chebyshev map. Int. J. Commun. Syst. 17(5), 437–445 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Omar Reyad
    • 1
    • 2
  • Zbigniew Kotulski
    • 2
  1. 1.Faculty of ScienceSohag UniversityEgypt
  2. 2.Faculty of Electronics and Information TechnologyWarsaw University of TechnologyPoland

Personalised recommendations