Advertisement

Context-Aware Secure Routing Protocol for Real-Time Services

  • Grzegorz Oryńczak
  • Zbigniew Kotulski
Part of the Communications in Computer and Information Science book series (CCIS, volume 448)

Abstract

The purpose of this paper is to propose a context-aware secure routing protocol suitable for real-time services. Since such a protocol undergoes a number of independent constraints connected with: dynamic changes of the environment, security assumptions, network limitations and end-users personal requirements, the context factors need specific treatment to be real support for an optimal route selection. The proposed framework systemizes the roles of all actors in establishing optimal and secure network connection for real-time services. The most suitable routing scheme is selected dynamically from the available portfolio, basing on actual context factors. Optimally, in the case of absence of any routing scheme satisfying a specific criterion given by context, a new scheme can be created on-demand, using the multi-constrained optimal path selection technique. The framework supports also additional optimization techniques (like fast packet retransmission, redundant routing etc.). Also the necessary security mechanisms have been implemented. Besides standard hard-security mechanisms, like private key encryption, also soft security techniques (i.e. reputation management) for detecting and blocking malicious nodes are used.

Keywords

context aware routing real-time communication routing security quality of service 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacDonald, N.: The Future of Information Security is Context-Aware and Adaptive. Gartner RAS Core Research Note G00200385 (2010)Google Scholar
  2. 2.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc and Ubiquitous Computing 2(4) (2007)Google Scholar
  3. 3.
    Jovanovikj, V., Gabrijelcic, D., Klobucar, T.: A conceptual model of security context. Int. J. Inf. Secur. (2014), doi:10.1007/s10207-014-0229-xGoogle Scholar
  4. 4.
    Hayashi, E., Das, S., Shahriyar, A., Owusu, E., Han, J., Hong, J., Oakley, I., Perrig, A., Zhang, J.: CASA: A Framework for Context-Aware Scalable Authentication. In: SOUPS 2013: Proceedings of the Ninth Symposium on Usable Privacy and Secrecy, Newcastle, UK (2013)Google Scholar
  5. 5.
    Michelberger, B., Mutschler, B., Reichert, M.: A Context Framework for Process-Oriented Information Logistics. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 260–271. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Li, W., Joshi, A., Finn, T.: CAST: A Context-Aware Security and Trust Framework for Mobile Ad-hoc Networks Using Polices. Distributed and Parallel Databases 31(2), 353–376 (2013)CrossRefGoogle Scholar
  7. 7.
    Kotulski, Z., Sepczuk, M., Sitek, A., Tunia, M.A.: Adaptable context management framework for secure network services – to be published (2014)Google Scholar
  8. 8.
    Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Network 24(2), 36–41 (2010)CrossRefGoogle Scholar
  9. 9.
    Ciszkowski, T., Mazurczyk, W., Kotulski, Z., Hossfeld, T., Fiedler, M., Collange, D.: Towards Quality of Experience-based Reputation Models for Future Web Service Provisioning. Telecommunication Systems 51(4), 283–295 (2012)CrossRefGoogle Scholar
  10. 10.
    Wrona, K., Gomez, L.: Context-aware security and secure context-awareness in ubiquitous computing environments. Annales UMCS Informatica AI4, 332–348 (2006)Google Scholar
  11. 11.
    Oryńczak, G., Kotulski, Z.: Agent based infrastructure for real-time applications. Annales UMCS, Informatica 11(4), 33–47 (2011)Google Scholar
  12. 12.
    Tao, S., Xu, K., Estepa, A., Gao, T.F.L., Guerin, R., Kurose, J., Towsley, D., Zhang, Z.-L.: Improving VoIP quality through path switching. In: 24th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2005. Proceedings IEEE, vol. 4. IEEE (2005)Google Scholar
  13. 13.
    Chen, X., Wang, C., Xuan, D., Li, Z., Min, Y., Zhao, W.: Survey on QoS Management of VoIP. In: International Conference on Computer Networks and Mobile Computing (ICCNMC 2003), IEEE (2003)Google Scholar
  14. 14.
    Aurrecoechea, C., Campbell, A.T., Hauw, L.: A survey of QoS architectures. Multimedia Systems 6(3), 138–151 (1998)CrossRefGoogle Scholar
  15. 15.
    Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., Stankovic, J., Abdelzaher, T.: Real-time power-aware routing in sensor networks. In: Proceeding of the 14th IEEE International Workshop on Quality of Service (IWQoS). IEEE (2006)Google Scholar
  16. 16.
    Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: Proceedings of the 1st ACM Workshop on Wireless Security. ACM (2002)Google Scholar
  17. 17.
    Haas, Z.J., Pearlman, M.R., Samar, P.: The zone routing protocol (ZRP) for Ad-hoc networks. In: Proceedings of the 55th Internet Engineering Task Force (2002)Google Scholar
  18. 18.
    Ma, Q., Steenkiste, P.: On path selection for traffic with bandwidth guarantees. In: Proceedings of the 1997 International Conference on Network, ICNP 1997, p. 191. IEEE Computer Society, Washington, DC (1997)Google Scholar
  19. 19.
    Li, Z., Mohapatra, P.: QRON: QoS-aware routing in overlay networks. IEEE Journal on Selected Areas in Communications 22(1), 29–40 (2004)CrossRefGoogle Scholar
  20. 20.
    Amir, Y., Danilov, C., Goose, S., Hedqvist, D., Terzis, A.: An overlay architecture for high-quality VoIP streams. IEEE Transactions on Multimedia 8(6), 1250–1262 (2006)CrossRefGoogle Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  22. 22.
    Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained optimal path computation: Exact and approximate algorithms. Computer Networks 54(17), 3081–3107 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.: An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine 40(12), 50–55 (2002)CrossRefGoogle Scholar
  24. 24.
    Wenning, B.L., Pesch, D., Timm-Giel, A., Görg, C.: Environmental monitoring aware routing in wireless sensor networks. Wireless and Mobile Networking 284, 5–16 (2008)CrossRefGoogle Scholar
  25. 25.
    Oryńczak, G., Kotulski, Z.: Notary-based self-healing mechanism for centralized peer-to-peer infrastructures. Annales UMCS, Informatica 12(4), 97–112 (2012)Google Scholar
  26. 26.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine 46(1), 72 (2008)CrossRefGoogle Scholar
  27. 27.
    Abusalah, L., Khokhar, A., Guizani, M.: A survey of secure mobile ad hoc routing protocols. IEEE Communications Surveys & Tutorials 10(4), 78–93 (2008)CrossRefGoogle Scholar
  28. 28.
    Jøsang, A., Roslan, I.: The beta reputation system. In: Proceedings of the 15th Bled Electronic Commerce Conference (2002)Google Scholar
  29. 29.
    Liu, J., Issarny, V.: Enhanced Reputation Mechanism for Mobile Ad Hoc Networks. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 48–62. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Grzegorz Oryńczak
    • 1
  • Zbigniew Kotulski
    • 2
  1. 1.Department of Physics, Astronomy and Applied Computer ScienceJagellonian UniversityCracowPoland
  2. 2.Institute of TelecommunicationsWarsaw University of TechnologyWarsawPoland

Personalised recommendations