Advertisement

Event Pattern Discovery for Cross-Layer Adaptation of Multi-cloud Applications

  • Chrysostomos Zeginis
  • Kyriakos Kritikos
  • Dimitris Plexousakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8745)

Abstract

As Cloud computing becomes a widely accepted service delivery platform, developers usually resort in multi-cloud setups to optimize their application deployment. In such heterogeneous environments, during application execution, various events are produced by several layers (Cloud and SOA specific), leading to or indicating Service Level Objective (SLO) violations. To this end, this paper proposes a meta-model to describe the components of multi-cloud Service-based Applications (SBAs) and an event pattern discovery algorithm to discover valid event patterns causing specific SLO violations. The proposed approach is empirically evaluated based on a real-world application.

Keywords

Cloud computing SOA adaptation modeling pattern discovery 

References

  1. 1.
    Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plexousakis, D., Zeginis, C.: Lifecycle Management of Service-based Applications on Multi-Clouds: A Research Roadmap. In: MultiCloud (2013)Google Scholar
  2. 2.
    Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-layer service adaptation. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 704–711. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Zengin, A., Marconi, A., Pistore, M.: CLAM: Cross-layer Adaptation Manager for Service-Based Applications. In: QASBA 2011, pp. 21–27. ACM (2011)Google Scholar
  4. 4.
    Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven Adaptation of Multi-Layer Applications using Templates. In: SASO (2010)Google Scholar
  5. 5.
    Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis, D.: Towards cross-layer monitoring of multi-cloud service-based applications. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 188–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Sim, A.T.H., Indrawan, M., Zutshi, S., Srinivasan, B.: Logic-based pattern discovery. IEEE Trans. Knowl. Data Eng. 22(6), 798–811 (2010)CrossRefGoogle Scholar
  7. 7.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  8. 8.
    Bettini, C., Wang, X.S., Jajodia, S., Lin, J.L.: Discovering frequent event patterns with multiple granularities in time sequences. IEEE Trans. Knowl. Data Eng. 10(2), 222–237 (1998)CrossRefGoogle Scholar
  9. 9.
    Hellerstein, J.L., Ma, S., Perng, C.S.: Discovering actionable patterns in event data. IBM Systems Journal 41(3), 475–493 (2002)CrossRefGoogle Scholar
  10. 10.
    Artikis, A., Sergot, M.J., Paliouras, G.: Run-time composite event recognition. In: DEBS, pp. 69–80. ACM (2012)Google Scholar

Copyright information

© International Federation for Information Processing 2014

Authors and Affiliations

  • Chrysostomos Zeginis
    • 1
  • Kyriakos Kritikos
    • 1
  • Dimitris Plexousakis
    • 1
  1. 1.ICS-FORTHHeraklionGreece

Personalised recommendations