Towards Multi-perspective Process Model Similarity Matching

  • Michael Heinrich Baumann
  • Michaela Baumann
  • Stefan Schönig
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 191)


Organizations increasingly determine process models to support documentation and redesign of workflows. In various situations correspondences between activities of different process models have to be found. The challenge is to find a similarity measure to identify similar activities in different process models. Current matching techniques predominantly consider lexical matching based on a comparison of activity labels and 1-to-1-matchings. However, label based matching probably fails, e.g., when modellers use different vocabulary or model activities at different levels of granularity. That is why we extend existing methods to compute candidate sets for N-to-M-matchings based on power-sets of nodes. Therefore, we impose higher demands on process models as we do not only consider labels, but also involved actors, data objects and the order of appearing. This information is used to identify similarities in process models that use different vocabulary and are modelled at different levels of granularity.


Business process model Process similarity Model matching 



The presented work is developed and used in the project “Kompetenzzentrum für praktisches Prozess- und Qualitätsmanagement”, which is funded by “Europäischer Fonds für regionale Entwicklung (EFRE)”.

The work of Michael Heinrich Baumann is supported by Hanns-Seidel-Stiftung e.V.


  1. 1.
    Dijkman, R., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning Business Process Models (2009)Google Scholar
  2. 2.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Dijkman, R., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  4. 4.
    Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based similarity assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dijkman, R.: A Classification of Differences between Similar Business Processes (2007)Google Scholar
  6. 6.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and Implementation. International Thomson Computer Press, London (1996). ISBN: 1850322228Google Scholar
  8. 8.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Weske, M.: Business Process Management: Concepts, Languages, Architecture. Springer, New York (2007)Google Scholar
  10. 10.
    Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Matching Business Process Workflows across Abstraction Levels, Models (2012)Google Scholar
  11. 11.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  13. 13.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity search of business process models. Bull. Tech. Comm. Data Eng. 32(2), 23–28 (2009)Google Scholar
  14. 14.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the 4th Asia-Pacific Conference on Conceptual Modelling, Ballarat, Victoria, Australia, pp. 71–80 (2007)Google Scholar
  15. 15.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equivalence: comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 11, 22–31 (1968)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Heinrich Baumann
    • 1
  • Michaela Baumann
    • 1
  • Stefan Schönig
    • 1
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations