Discovering Dynamic Communities in Interaction Networks

  • Polina Rozenshtein
  • Nikolaj Tatti
  • Aristides Gionis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8725)


Online social networks are often defined by considering interactions over large time intervals, e.g., consider pairs of individuals who have called each other at least once in a mobilie-operator network, or users who have made a conversation in a social-media site. Although such a definition can be valuable in many graph-mining tasks, it suffers from a severe limitation: it neglects the precise time that the interaction between network nodes occurs.

In this paper we study interaction networks, where one considers not only the social-network topology, but also the exact time that nodes interact. In an interaction network an edge is associated with a time stamp, and multiple edges may occur for the same pair of nodes. Consequently, interaction networks offer a more fine-grained representation that can be used to reveal otherwise hidden dynamic phenomena in the network.

We consider the problem of discovering communities in interaction networks, which are dense and whose edges occur in short time intervals. Such communities represent groups of individuals who interact with each other in some specific time instances, for example, a group of employees who work on a project and whose interaction intensifies before certain project milestones.We prove that the problem we define is NP-hard, and we provide effective algorithms by adapting techniques used to find dense subgraphs. We perform extensive evaluation of the proposed methods on synthetic and real datasets, which demonstrates the validity of our concepts and the good performance of our algorithms.


Community detection graph mining social-network analysis dynamic graphs time-evolving networks interaction networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akoglu, L., Faloutsos, C.: Event detection in time series of mobile communication graphs. In: Army Science Conference (2010)Google Scholar
  2. 2.
    Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. Journal of Algorithms 34(2) (2000)Google Scholar
  3. 3.
    Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. TKDD  3(4) (2009)Google Scholar
  4. 4.
    Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: KDD (2006)Google Scholar
  5. 5.
    Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Berlingerio, M., Pinelli, F., Calabrese, F.: Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Mining and Knowledge Discovery 27(3), 294–320 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bogdanov, P., Mongiovì, M., Singh, A.K.: Mining heavy subgraphs in time-evolving networks. In: ICDM (2011)Google Scholar
  8. 8.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: KDD (2000)Google Scholar
  10. 10.
    Fortunato, S.: Community detection in graphs. Physics Reports 486 (2010)Google Scholar
  11. 11.
    Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis and Applications 13(1) (2010)Google Scholar
  12. 12.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99 (2002)Google Scholar
  13. 13.
    Gleich, D.F., Seshadhri, C.: Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In: KDD (2012)Google Scholar
  14. 14.
    Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: ASONAM (2010)Google Scholar
  15. 15.
    Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics (2005)Google Scholar
  16. 16.
    Ide, T., Kashima, H.: Eigenspace-based anomaly detection in computer systems. In: KDD (2004)Google Scholar
  17. 17.
    Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Information Processing Letters 70(1) (1999)Google Scholar
  18. 18.
    Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: SODA (2009)Google Scholar
  19. 19.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: KDD (2006)Google Scholar
  20. 20.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD (2008)Google Scholar
  21. 21.
    Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: WWW (2010)Google Scholar
  22. 22.
    Lin, Y., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.: Facetnet: A framework for analyzing communities and their evolutions in dynamic networks. In: WWW (2008)Google Scholar
  23. 23.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Palla, G., Barabási, A., Vicsek, T.: Quantifying social group evolution. Nature 446 (2007)Google Scholar
  25. 25.
    Papadimitriou, P., Dasdan, A., Garcia-Molina, H.: Web graph similarity for anomaly detection. Journal of Internet Services and Applications 1(1) (2010)Google Scholar
  26. 26.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms Applications 10(2) (2006)Google Scholar
  27. 27.
    Priebe, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan statistics on enron graphs. Computational & Mathematical Organization Theory 11(3) (2005)Google Scholar
  28. 28.
    Sricharan, K., Das, K.: Localizing anomalous changes in time-evolving graphsGoogle Scholar
  29. 29.
    Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: KDD (2007)Google Scholar
  30. 30.
    van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)Google Scholar
  31. 31.
    Zhou, R., Liu, C., Yu, J.X., Liang, W., Zhang, Y.: Efficient truss maintenance in evolving networks. arXiv preprint arXiv:1402.2807 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Polina Rozenshtein
    • 1
  • Nikolaj Tatti
    • 1
  • Aristides Gionis
    • 1
  1. 1.Helsinki Institute for Information TechnologyAalto UniversityFindland

Personalised recommendations