Large-Scale Multi-label Text Classification — Revisiting Neural Networks

  • Jinseok Nam
  • Jungi Kim
  • Eneldo Loza Mencía
  • Iryna Gurevych
  • Johannes Fürnkranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8725)

Abstract

Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL’s ranking loss minimization can be efficiently and effectively replaced with the commonly used cross entropy error function, and demonstrate that several advances in neural network training that have been developed in the realm of deep learning can be effectively employed in this setting. Our experimental results show that simple NN models equipped with advanced techniques such as rectified linear units, dropout, and AdaGrad perform as well as or even outperform state-of-the-art approaches on six large-scale textual datasets with diverse characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bi, W., Kwok, J.T.: Multi-label classification on tree-and dag-structured hierarchies. In: Proceedings of the 28th International Conference on Machine Learning, pp. 17–24 (2011)Google Scholar
  2. 2.
    Calauzènes, C., Usunier, N., Gallinari, P.: On the (non-)existence of convex, calibrated surrogate losses for ranking. In: Advances in Neural Information Processing Systems 25, pp. 197–205 (2012)Google Scholar
  3. 3.
    Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, pp. 279–286 (2010)Google Scholar
  4. 4.
    Dembczyński, K., Kotłowski, W., Hüllermeier, E.: Consistent multilabel ranking through univariate losses. In: Proceedings of the 29th International Conference on Machine Learning, pp. 1319–1326 (2012)Google Scholar
  5. 5.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)MATHGoogle Scholar
  6. 6.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research 12, 2121–2159 (2011)MATHMathSciNetGoogle Scholar
  7. 7.
    Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems 14, pp. 681–687 (2001)Google Scholar
  8. 8.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)MATHGoogle Scholar
  9. 9.
    Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)CrossRefGoogle Scholar
  10. 10.
    Gao, W., Zhou, Z.H.: On the consistency of multi-label learning. Artificial Intelligence 199-200, 22–44 (2013)Google Scholar
  11. 11.
    Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200 (2005)Google Scholar
  12. 12.
    Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, JMLR W&CP, pp. 249–256 (2010)Google Scholar
  13. 13.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, JMLR W&CP, pp. 315–323 (2011)Google Scholar
  14. 14.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. ArXiv preprint ArXiv:1207.0580 (2012)Google Scholar
  15. 15.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226 (2006)Google Scholar
  17. 17.
    LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural Networks: Tricks of the Trade, pp. 9–48 (2012)Google Scholar
  18. 18.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5, 361–397 (2004)Google Scholar
  19. 19.
    Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector machines classification with a very large-scale taxonomy. SIGKDD Explorations 7(1), 36–43 (2005)CrossRefGoogle Scholar
  20. 20.
    Loza Mencía, E., Park, S.H., Fürnkranz, J.: Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7-9), 1164–1176 (2010)CrossRefGoogle Scholar
  21. 21.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  22. 22.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)Google Scholar
  23. 23.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for multi-label document classification. Machine Learning 88(1-2), 157–208 (2012)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefGoogle Scholar
  26. 26.
    Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Solla, S.A., Levin, E., Fleisher, M.: Accelerated learning in layered neural networks. Complex Systems 2(6), 625–640 (1988)MATHMathSciNetGoogle Scholar
  28. 28.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-label classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, pp. 325–330 (2008)Google Scholar
  29. 29.
    Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)CrossRefGoogle Scholar
  30. 30.
    Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-to-rank framework. Machine Learning 88(1-2), 47–68 (2012)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Zeiler, M.D., Ranzato, M., Monga, R., Mao, M.Z., Yang, K., Le, Q.V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., Hinton, G.E.: On rectified linear units for speech processing. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3517–3521 (2013)Google Scholar
  32. 32.
    Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18, 1338–1351 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jinseok Nam
    • 1
    • 2
  • Jungi Kim
    • 1
  • Eneldo Loza Mencía
    • 1
  • Iryna Gurevych
    • 1
    • 2
  • Johannes Fürnkranz
    • 1
  1. 1.Department of Computer ScienceTechnische UniversitätDarmstadtGermany
  2. 2.Knowledge Discovery in Scientific LiteratureGerman Institute for Educational ResearchGermany

Personalised recommendations