Advertisement

BMaD – A Boolean Matrix Decomposition Framework

  • Andrey Tyukin
  • Stefan Kramer
  • Jörg Wicker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8726)

Abstract

Boolean matrix decomposition is a method to obtain a compressed representation of a matrix with Boolean entries. We present a modular framework that unifies several Boolean matrix decomposition algorithms, and provide methods to evaluate their performance. The main advantages of the framework are its modular approach and hence the flexible combination of the steps of a Boolean matrix decomposition and the capability of handling missing values. The framework is licensed under the GPLv3 and can be downloaded freely at http://projects.informatik.uni-mainz.de/bmad .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  2. 2.
    Lu, H.: Boolean matrix decomposition and extension with applications. PhD thesis, Rutgers University (2011)Google Scholar
  3. 3.
    Miettinen, P.: The Boolean column and column-row matrix decompositions. Data Mining and Knowledge Discovery 17(1), 39–56 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Miettinen, P., et al.: Matrix decomposition methods for data mining: Computational complexity and algorithms. PhD thesis, University of Helsinki (2009)Google Scholar
  5. 5.
    Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis problem. IEEE Transactions on Knowledge and Data Engineering 20(10), 1348–1362 (2008)CrossRefGoogle Scholar
  6. 6.
    Shen, B.-H., Ji, S., Ye, J.: Mining discrete patterns via binary matrix factorization. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 757–766. ACM (2009)Google Scholar
  7. 7.
    Streich, A.P., Frank, M., Basin, D., Buhmann, J.M.: Multi-assignment clustering for Boolean data. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 969–976. ACM (2009)Google Scholar
  8. 8.
    Vaidya, J.: Boolean matrix decomposition problem: Theory, variations and applications to data engineering. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 1222–1224. IEEE (2012)Google Scholar
  9. 9.
    Wicker, J., Pfahringer, B., Kramer, S.: Multi-label classification using Boolean matrix decomposition. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 179–186. ACM (2012)Google Scholar
  10. 10.
    Zhang, Z.-Y., Li, T., Ding, C., Ren, X.-W., Zhang, X.-S.: Binary matrix factorization for analyzing gene expression data. Data Mining and Knowledge Discovery 20(1), 28–52 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrey Tyukin
    • 1
  • Stefan Kramer
    • 1
  • Jörg Wicker
    • 1
  1. 1.Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations