Nanoparticles pp 257-272 | Cite as
Electron Paramagnetic Resonance Based Spectroscopic Techniques
Chapter
First Online:
- 2.9k Downloads
Abstract
This chapter addresses the use of electron paramagnetic resonance based spectroscopic techniques to study nanostructures. Particular attention is given to high frequency electron spin echo, electron-nuclear double resonance and optically detected magnetic resonance spectroscopy.
Keywords
EPRElectron Paramagnetic Resonance EPRElectron Paramagnetic Resonance Spectrum EPRElectron Paramagnetic Resonance Signal Dynamic Nuclear Polarization EPRElectron Paramagnetic Resonance Line
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Notes
Acknowledgments
The work described in this chapter has been supported by the Russian Science Foundation under Agreement #14-12-00859.
References
- 1.Zavoisky, E.: The paramagnetic absorption of a solution in parallel fields. J. Phys. 8, 377–380 (1944)Google Scholar
- 2.Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions. Oxford University Press, London (1970)Google Scholar
- 3.Geschwind, S.: Optical techniques in EPR in solids. In: Geshwind, S. (ed.) Electron Paramagnetic Resonance, pp. 353–425. New York, Plenum (1972)CrossRefGoogle Scholar
- 4.Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, London (2001)Google Scholar
- 5.Baranov, P.G., Orlinskii, S.B., Donega, C. d. M., Schmidt, J.: High-Frequency EPR and ENDOR spectroscopy on semiconductor quantum dots. Appl. Magn. Reson. 39, 151–183 (2010) (and references therein)Google Scholar
- 6.Baranov, P.G., Romanov, N.G.: Magnetic resonance in micro- and nanostructures. Appl. Magn. Reson. 21, 165–193 (2001). (and references therein)CrossRefGoogle Scholar
- 7.Lifshitz, E., Fradkin, L., Glozman, A., Langof, L.: Optically detected magnetic resonance studies of colloidal semiconductor nanocrystals. Annu. Rev. Phys. Chem. 55, 509–557 (2004). (and references therein)CrossRefGoogle Scholar
- 8.Synthesis and properties of colloidal heteronanocrystals: Donega, C. d. M. Chem. Soc. Rev. 40, 1512–1546 (2011)CrossRefGoogle Scholar
- 9.Baranov, P.G., Romanov, N.G., Poluektov, O.G., Schmidt, J.: Self-Trapped excitons in ionic-covalent silver halide crystals and nanostructures: High-frequency EPR, ESE, ENDOR and ODMR studies. Appl. Magn. Reson. 39, 453–486 (2010)CrossRefGoogle Scholar
- 10.Fang, X.W., Mao, J.D., Levin, E.M., Schmidt-Rohr, K.: Non-aromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 1426–1435 (2009)CrossRefGoogle Scholar
- 11.Bradac, C., Gaebel, T., Naidoo, N., Sellars, M.J., Twamley, J., Brown, L.J., Barnard, A.S., Plakhotnik, T., Zvyagin, A.V., Rabeau, J.R.: Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010)CrossRefGoogle Scholar
- 12.Baranov, P.G., Soltamova, A.A., Tolmachev, D.O., Romanov, N.G., Babunts, R.A., Shakhov, F.M., Kidalov, S.V., Vul’, A.Ya., Mamin, G.V., Orlinskii, S.B., Silkin, N.I.: Enormously high concentrations of fluorescent nitrogen-vacancy centers fabricated by sintering of detonation nanodiamonds. Small 7, 1533–1537 (2011)Google Scholar
- 13.Orlinskii, S.B., Blok, H., Schmidt, J., Baranov, P.G., de Mello Donegá, C., Meijerink, A.: Donor-acceptor pairs in the confined structure of ZnO nanocrystals. Phys. Rev. B 74, 045204 (2006)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2014