Metal Nanoparticles for Microscopy and Spectroscopy

  • Peter Zijlstra
  • Michel Orrit
  • A. Femius Koenderink
Chapter

Abstract

Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications.

References

  1. 1.
    Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)CrossRefGoogle Scholar
  2. 2.
    Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer-Verlag, Berlin (1995)CrossRefGoogle Scholar
  3. 3.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Brooks Cole (1976)Google Scholar
  4. 4.
    Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B. 6, 4370–7379 (1972)CrossRefGoogle Scholar
  5. 5.
    Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, Boston (1998)Google Scholar
  6. 6.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-VCH, Weinheim (1998)CrossRefGoogle Scholar
  7. 7.
    Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668–677 (2003)CrossRefGoogle Scholar
  8. 8.
    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRefGoogle Scholar
  9. 9.
    Sönnichsen, C., Franzl, T., Wilk, T., Von Plessen, G., Feldmann, J., Wilson, O., Mulvaney, P.: Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 77402 (2002)CrossRefGoogle Scholar
  10. 10.
    Zijlstra, P., Orrit, M.: Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Progr. Phys. 74, 106401 (2011)CrossRefGoogle Scholar
  11. 11.
    Yguerabide, J., Yguerabide, E.E.: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal. Biochem. 262, 137–156 (1998)CrossRefGoogle Scholar
  12. 12.
    Klar, T., Perner, M., Grosse, S., Von Plessen, G., Spirkl, W., Feldmann, J.: Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249–4252 (1998)CrossRefGoogle Scholar
  13. 13.
    McMahon, J.A., Wang, Y.M., Sherry, L.J., Van Duyne, R.P., Marks, L.D., Gray, S.K., Schatz, G.C.: Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J. Phys. Chem. C 113, 2731–2735 (2009)CrossRefGoogle Scholar
  14. 14.
    Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V.: Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 37401 (2004)CrossRefGoogle Scholar
  15. 15.
    Boyer, D., Tamarat, P., Maali, A., Lounis, B., Orrit, M.: Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)CrossRefGoogle Scholar
  16. 16.
    Mooradian, A.: Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)CrossRefGoogle Scholar
  17. 17.
    Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., Kusumi, A.: Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002)CrossRefGoogle Scholar
  18. 18.
    Lasne, D., Blab, G.A., Berciaud, S., Heine, M., Groc, L., Choquet, D., Cognet, L., Lounis, B.: Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 91, 4598–4604 (2006)CrossRefGoogle Scholar
  19. 19.
    Ruijgrok, P.V., Verhart, N., Zijlstra, P., Tchebotareva, A.L., Orrit, M.: Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107, 37401 (2011)CrossRefGoogle Scholar
  20. 20.
    Kyrsting, A., Bendix, P.M., Stamou, D.G., Oddershede, L.B.: Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. Nano Lett. 11, 888–892 (2011)CrossRefGoogle Scholar
  21. 21.
    Seol, Y., Carpenter, A.E., Perkins, T.T.: Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006)CrossRefGoogle Scholar
  22. 22.
    Zijlstra, P., Paulo, P.M.R., Orrit, M.: Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnol. 7, 379–382 (2012)CrossRefGoogle Scholar
  23. 23.
    Ament, I., Prasad, J., Henkel, A., Schmachtel, S., Sönnichsen, C.: Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012)CrossRefGoogle Scholar
  24. 24.
    Sannomiya, T., Hafner, C., Voros, J.: In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 8, 3450–3455 (2008)CrossRefGoogle Scholar
  25. 25.
    Zijlstra, P., Paulo, P.M.R., Yu, K., Xu, Q.-H., Orrit, M.: Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization. Angew. Chem. Int. Ed. 51, 8352–8355 (2012)CrossRefGoogle Scholar
  26. 26.
    Beeram, S.R., Zamborini, F.P.: Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J. Amer. Chem. Soc. 131, 11689–11691 (2009)CrossRefGoogle Scholar
  27. 27.
    Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRefGoogle Scholar
  28. 28.
    Mertens, H., Koenderink, A.F., Polman, A.: Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B. 76, 1–12 (2007)CrossRefGoogle Scholar
  29. 29.
    Liu, M.Z., Guyot-Sionnest, P., Lee, T.W., Gray, S.K.: Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys. Rev. B. 76, 235428 (2007)CrossRefGoogle Scholar
  30. 30.
    Kinkhabwala, A., Yu, Z.F., Fan, S.H., Avlasevich, Y., Mullen, K., Moerner, W.E.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009)CrossRefGoogle Scholar
  31. 31.
    Novotny, L., Stranick, S.J.: Near-field optical microscopy and spectroscopy with pointed probes. Ann. Rev. Phys. Chem. 57, 303–331 (2006)CrossRefGoogle Scholar
  32. 32.
    Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)CrossRefGoogle Scholar
  33. 33.
    García De Abajo, F.J.: Multiple scattering of radiation in clusters of dielectrics. Phys. Rev. B. 60, 6086–6102 (1999)CrossRefGoogle Scholar
  34. 34.
    Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010)CrossRefGoogle Scholar
  35. 35.
    Hentschel, M., Saliba, M., Vogelgesang, R., Giessen, H., Alivisatos, A.P., Liu, N.: Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010)CrossRefGoogle Scholar
  36. 36.
    Frimmer, M., Coenen, T., Koenderink, A.F.: Signature of a fano resonance in a plasmonic metamolecule’s local density of optical states. Phys. Rev. Lett. 108, 077404 (2012)CrossRefGoogle Scholar
  37. 37.
    Zuloaga, J., Prodan, E., Nordlander, P.: Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009)CrossRefGoogle Scholar
  38. 38.
    De Hoogh, A., Hommersom, B., Koenderink, A.F.: Wavelength-selective addressing of visible and near-infrared plasmon resonances for SU8 nanolithography. Opt. Express 19, 11405–11414 (2011)CrossRefGoogle Scholar
  39. 39.
    Muskens, O.L., Giannini, V., Sánchez-Gil, J.A., Gómez Rivas, J.: Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7, 2871–2875 (2007)CrossRefGoogle Scholar
  40. 40.
    Bidault, S., García De Abajo, F.J., Polman, A.: Plasmon-based nanolenses assembled on a well-defined DNA template. J. Amer. Chem. Soc. 130, 2750–2751 (2008)CrossRefGoogle Scholar
  41. 41.
    Busson, M.P., Rolly, B., Stout, B., Bonod, N., Bidault, S.: Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA. Nature Commun. 3, 962 (2012)CrossRefGoogle Scholar
  42. 42.
    Balanis, C.A.: Antenna theory: Analysis and design. Wiley Asia (2005)Google Scholar
  43. 43.
    Hofmann, H.F., Kosako, T., Kadoya, Y.: Design parameters for a nano-optical Yagi-Uda antenna. New J. Phys. 9, 217 (2007)CrossRefGoogle Scholar
  44. 44.
    Li, J., Salandrino, A., Engheta, N.: Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Phys. Rev. B. 79, 195104 (2009)CrossRefGoogle Scholar
  45. 45.
    Taminiau, T.H., Stefani, F.D., Van Hulst, N.F.: Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt. Express 16, 10858–10866 (2008)CrossRefGoogle Scholar
  46. 46.
    Koenderink, A.F.: Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9, 4228–4233 (2009)CrossRefGoogle Scholar
  47. 47.
    Ji, R., Hornung, M., Verschuuren, M.A., Van de Laar, R., Van Eekelen, J., Plachetka, U., Moeller, M., Moormann, C.: UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 87, 963–967 (2010)CrossRefGoogle Scholar
  48. 48.
    Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., Van Hulst, N.F.: Unidirectional Emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)CrossRefGoogle Scholar
  49. 49.
    Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Theory of extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667–669 (1998)CrossRefGoogle Scholar
  50. 50.
    García De Abajo, F.J.: Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007)CrossRefGoogle Scholar
  51. 51.
    Garcia-Vidal, F.J., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)CrossRefGoogle Scholar
  52. 52.
    Zou, S., Janel, N., Schatz, G.C.: Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004)CrossRefGoogle Scholar
  53. 53.
    Vecchi, G., Giannini, V., Gómez Rivas, J.: Shaping the Fluorescent emission by Lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009)CrossRefGoogle Scholar
  54. 54.
    Hennemann, L.E., Kolloch, A., Kern, A., Mihaljevic, J., Boneberg, J., Leiderer, P., Meixner, A.J., Zhang, D.: Assessing the plasmonics of gold nano-triangles with higher order laser modes. Beilstein J. Nanotechnol. 3, 674–683 (2012)CrossRefGoogle Scholar
  55. 55.
    Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010)CrossRefGoogle Scholar
  56. 56.
    Yokogawa, S., Burgos, S.P., Atwater, H.A.: Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Zijlstra
    • 1
  • Michel Orrit
    • 2
  • A. Femius Koenderink
    • 3
  1. 1.Faculty of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
  3. 3.Center for NanophotonicsFOM Institute AMOLFAmsterdamThe Netherlands

Personalised recommendations