Advertisement

A Novel Linear, Unbiased Estimator to Fuse Delayed Measurements in Distributed Sensor Networks with Application to UAV Fleet

  • Ronan Arraes Jardim ChagasEmail author
  • Jacques Waldmann

Abstract

This paper proposes a novel methodology to fuse delayed measurements in a distributed sensor network. The algorithm derives from the linear minimum mean square error estimator and yields a linear, unbiased estimator that fuses the delayed measurements. Its performance regarding the estimation accuracy, computational workload and memory storage needs is compared to the classical Kalman filter reiteration that achieves the minimum mean square error in linear and Gaussian systems. The comparison is carried out using a simulated distributed sensor network that consists of a UAV fleet in formation flight in which the GPS measurements and relative positions are exchanged among neighboring network nodes. The novel technique yields similar performance to the reiterated Kalman filtering, which is the optimal linear Gaussian solution, while demanding less storage capacity and computational throughput in the problems of interest.

Keywords

Delayed measurements measurement transportation distributed Kalman filter sensors network UAV fleet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olfati-Saber, R.: Distributed Kalman Filtering for Sensor Networks. In: 46th IEEE Conference on Decision and Control, pp. 5492–5498. IEEE Press, New York (2007)Google Scholar
  2. 2.
    Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: Diffusions Strategies for Distributed Kalman Filtering: Formulation and Performance Analysis. In: 2008 IARP Workshop on Cognitive Information Processing. IAPR Press, New York (2008)Google Scholar
  3. 3.
    Carlson, N.A.: Federated Filter for Fault-Tolerant Integrated Navigation Systems. In: 1998 IEEE Position, Location and Navigation Symposium, pp. 110–119. IEEE Press, New York (1998)Google Scholar
  4. 4.
    Felter, S.C.: An Overview of Decentralized Kalman Filter Techniques. In: 1990 IEEE Southern Tier Technical Conference, pp. 79–87. IEEE Press, New York (1990)Google Scholar
  5. 5.
    Qui, H.Z., Zhang, H.Y., Jin, H.: Fusion Algorithm of Correlated Local Estimates. Aerospace Science and Technology 8, 619–629 (2004)CrossRefGoogle Scholar
  6. 6.
    Borreli, F., Keviczky, T., Balas, J.G.: Collision-free UAV Formation Flight using Decentralized Optimization and Invariant Sets. In: 43th IEEE Conference on Decision and Control, vol. 1, pp. 1099–1104. IEEE Press, New York (2004)Google Scholar
  7. 7.
    Fergunson, P., Yang, T., Tillerson, M., How, J.: New Formation Flying Testbed for Analyzing Distributed Estimation and Control Architectures. In: 2002 AIAA Guidance, Navigation and Control Conference. AIAA Press, Reston (2002)Google Scholar
  8. 8.
    Fergunson, P., How, J.: Decentralized Estimation Algorithms for Formation Flying Spacecraft. In: 2003 AIAA Guidance, Navigation and Control Conference. AIAA Press, Reston (2003)Google Scholar
  9. 9.
    Smith, R.S., Hadaegh, F.Y.: Parallel Estimation and Control Architectures for Deep-space Formation Flying Spacecraft. In: 2006 IEEE Aerospace Conference, pp. 1–10. IEEE Press, New York (2006)Google Scholar
  10. 10.
    Smith, R.S., Hadaegh, F.Y.: A Distributed Parallel Estimation Architecture for Cooperative Vehicle Formation Control. In: 2006 IEEE Aerospace Conference. IEEE Press, New York (2006)Google Scholar
  11. 11.
    Azizi, S.M., Khorasani, K.: A Distributed Kalman Filter for Actuator Fault Estimation of Deep Space Formation Flying Satellites. In: 3rd Annual IEEE International Systems Conference, pp. 354–359. IEEE Press, New York (2009)Google Scholar
  12. 12.
    Alouani, A.T.: Linear Distributed Estimation. In: 1987 IEEE American Control Conference, pp. 412–417. IEEE Press, New York (1987)Google Scholar
  13. 13.
    Berg, T.M., Durrant-Whyte, H.F.: General Decentralized Kalman Filters. In: 1994 IEEE American Control Conference, vol. 2, pp. 2273–2274. IEEE Press, New York (1994)CrossRefGoogle Scholar
  14. 14.
    Tasoulis, D.K., Adams, N.M., Hand, D.J.: Selective Fusion of Out-of-Sequence Measurements. Information Fusion 11(2), 183–191 (2010)CrossRefGoogle Scholar
  15. 15.
    Matveev, A., Savkin, A.: The Problem of State Estimation via Asynchronous Communication Channels with Irregular Transmission Times. IEEE Transactions on Automatic Control 48(4), 670–676 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, K., Li, X.R., Zhu, Y.: Optimal Update with Out-of-Sequence Measurements. IEEE Transactions on Signal Processing 56(6), 1992–2004 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lu, X., Zhang, H., Wang, W., Teo, K.: Kalman Filtering for Multiple Time-Delay Systems. Automatica 41(86), 1455–1461 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Alexander, H.L.: State Estimation for Distributed Systems with Sensing Delay. In: Libby, V. (ed.) Data Structures and Target Classification, vol. 1470, pp. 103–111. SPIE (1991)Google Scholar
  19. 19.
    Larsen, T.D., Andersen, N.A., Ravn, O., Poulsen, N.K.: Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter. In: 37th IEEE Conference on Decision and Control, pp. 3972–3977. IEEE Press, New York (1998)Google Scholar
  20. 20.
    Besada-Portas, E., Lopez-Orozco, J.A., Besada, J.A., de la Cruz, J.M.: Multisensor Out of Sequence Data Fusion for Estimating the State of Discrete Control Systems. IEEE Transactions on Automatic Control 54(7), 1728–1732 (2009)CrossRefGoogle Scholar
  21. 21.
    Brown, R.G., Hartman, G.L.: Kalman Filter with Delayed States as Observables. In: 1968 National Electronics Conference. National Electronics Conference, Oak Brook (1968)Google Scholar
  22. 22.
    Bar-Shalom, Y., Mallick, M., Chen, H., Washburn, R.: One-step Solution for the General Out-of-Sequence Measurement Problem in Tracking. In: 2002 IEEE Aerospace Conference, vol. 4, pp. 1551–1559. IEEE Press, New York (2002)Google Scholar
  23. 23.
    Gopolakrishnan, A., Kaisare, N.S., Narasimhan, S.: Incorporating Delayed and Infrequent Measurements in Extended Kalman Filter based Nonlinear State Estimation. Journal of Process Control 21, 119–129 (2011)CrossRefGoogle Scholar
  24. 24.
    Leung, K.Y.K., Barfoot, T.D., Liu, H.H.T.: Decentralized Localization of Sparsely-Communicating Robot Networks: A Cetralized-Equivalent Approach. IEEE Transactions on Robotics 26(1), 62–77 (2010)CrossRefGoogle Scholar
  25. 25.
    Thomopoulos, S., Zhang, L.: Decentralized Filtering with Random Sampling and Delay. Information Fusion 81(1-2), 117–131 (1994)zbMATHGoogle Scholar
  26. 26.
    Maybeck, P.S.: Stochastic Models, Estimation and Control, vol. 1. Academic Press, New York (1979)zbMATHGoogle Scholar
  27. 27.
    Chagas, R.A.J.: Distributed Estimation of Aided INS Errors. Ph.D. thesis. Instituto Tecnológico de Aeronáutica. SP, Brazil (2012) (in Portuguese)Google Scholar
  28. 28.
    Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Inc., Englewood Cliffs (1979)Google Scholar
  29. 29.
    Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Inc., Hoboken (1997)Google Scholar
  30. 30.
    VanValkenburgh, M.: The Matrix Exponential Function, http://math.berkeley.edu/~mjv/H54Lec22.pdf
  31. 31.
    Weinred, A., Bar-Itzhack, I.Y.: The Psi-Angle Error Equation in Strapdown Inertial Navigation Systems. IEEE Transactions on Aerospace and Electronic Systems 14(3), 539–542 (1979)Google Scholar
  32. 32.
    Lee, J., Park, C.G., Park, H.W.: Multiposition Alignment of Strapdown Inertial Navigation System. IEEE Transactions on Aerospace and Electronic Systems 29(4), 1323–1328 (1993)CrossRefGoogle Scholar
  33. 33.
    Lapid-Maoz, J., Bar-Itzhack, I.Y.: Relative-Location Determination of Cooperating Aircraft. In: 2000 AIAA Guidance, Navigation and Control Conference. AIAA Press, Reston (2000)Google Scholar
  34. 34.
    Salychev, O.: Applied Inertial Navigation: Problems and Solutions. BMSTU Press, Moscow (2004)Google Scholar
  35. 35.
    Chagas, R.A.J., Waldmann, J.: Geometric Inference-Based Observability Analysis Digest of INS Error Model with GPS/Magnetometer/Camera Aiding. In: 19th Saint Petersburg International Conference on Integrated Navigation Systems. CSRI Elektropribor, JSC, Saint Petersburg, Russia (2012)Google Scholar
  36. 36.
    Shuster, M., Oh, S.: Three-Axis Attitude Determination from Vector Observations. Journal of Guidance, Control, and Dynamics 4(1), 70–77 (1981)CrossRefzbMATHGoogle Scholar
  37. 37.
    Goshen-Meskin, D., Bar-Itzhack, I.Y.: Observability Analysis of Piece-Wise Constant Systems - Part II: Application to Inertial Navigation In-Flight Alignment. IEEE Transactions on Aerospace and Electronic Systems 28(4), 1068–1075 (1992)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Chung, D., Park, C.G., Lee, J.G.: Observability Analysis of Strapdown Inertial Navigation System using Lyapunov Transformation. In: 35th IEEE Conference on Decision and Control, pp. 23–28. IEEE Press, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ronan Arraes Jardim Chagas
    • 1
    Email author
  • Jacques Waldmann
    • 1
  1. 1.Instituto Tecnológico de AeronáuticaSão PauloBrazil

Personalised recommendations