Improved Guarantees for Tree Cut Sparsifiers

  • Harald Räcke
  • Chintan Shah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)


Harrelson, Hildrum and Rao [11] construct for a given graph a single tree that acts as a flow sparsifier, i.e., it can approximate multicommodity flows in G up to an O(log 2 nloglog n) factor. Many applications that use these trees do not actually require a flow sparsifier but would already work with just having a cut sparsifier. We show how to construct a cut sparsifier that is a single tree and has quality O(log 1.5 nloglog n).

In addition we show a close connection of this problem to the Mincut Linear Arrangement Problem which shows that improving the guarantee to o(log 1.5 n) might be difficult.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreev, K., Garrod, C., Golovin, D., Maggs, B., Meyerson, A.: Simultaneous source location. ACM Transactions on Algorithms 6(1) (2009)Google Scholar
  2. 2.
    Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph partitionings. In: Proc. of the 36th STOC, pp. 222–231 (2004)Google Scholar
  3. 3.
    Bansal, N., Feige, U., Krauthgamer, R., Makarychev, K., Nagarajan, V., Naor, J.S., Schwartz, R.: Min-max graph partitioning and small set expansion. In: Proc. of the 52nd FOCS, pp. 17–26 (2011)Google Scholar
  4. 4.
    Benczur, A.A., Karger, D.R.: Approximate s-t min-cuts in \(\tilde{O}(n^2)\) time. In: Proc. of the 28th STOC, pp. 47–55 (1996)Google Scholar
  5. 5.
    Charikar, M., Leighton, F.T., Li, S., Moitra, A.: Vertex sparsifiers and abstract rounding algorithms. In: Proc. of the 51st FOCS, pp. 265–274 (2010)Google Scholar
  6. 6.
    Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow problem. In: Proc. of the 36th STOC, pp. 156–165 (2004)Google Scholar
  7. 7.
    Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked terminals, and routing problems. In: Proc. of the 37th STOC, pp. 183–192 (2005)Google Scholar
  8. 8.
    Chuzhoy, J.: On vertex sparsifiers with steiner nodes. In: Proc. of the 44th STOC, pp. 673–688 (2012)Google Scholar
  9. 9.
    Engelberg, R., Könemann, J., Leonardi, S., Naor, J.S.: Cut problems in graphs with a budget constraint. Journal of Discrete Algorithms 5(2), 262–279 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Englert, M., Gupta, A., Krauthgamer, R., Räcke, H., Talgam-Cohen, I., Talwar, K.: Vertex sparsifiers: New results from old techniques. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302, pp. 152–165. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Proc. of the 15th SPAA, pp. 34–43 (2003)Google Scholar
  12. 12.
    Khandekar, R., Kortsarz, G., Mirrokni, V.: Advantage of overlapping clusters for minimizing conductance. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 494–505. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. Algorithmica 59(4), 489–509 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Leighton, F.T., Moitra, A.: Extensions and limits to vertex sparsification. In: Proc. of the 42nd STOC, pp. 47–56 (2010)Google Scholar
  15. 15.
    Makarychev, K., Makarychev, Y.: Metric extension operators, vertex sparsifiers and Lipschitz extendability. In: Proc. of the 51st FOCS, pp. 255–264 (2010)Google Scholar
  16. 16.
    Moitra, A.: Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In: Proc. of the 50th FOCS, pp. 3–12 (2009)Google Scholar
  17. 17.
    Räcke, H.: Minimizing congestion in general networks. In: Proc. of the 43rd FOCS, pp. 43–52 (2002)Google Scholar
  18. 18.
    Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proc. of the 40th STOC, pp. 255–264 (2008)Google Scholar
  19. 19.
    Stotz, R.: Approximation algorithms for scheduling processes in distributed systems. Master’s thesis, Institut für Informatik, Technische Universität München (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Harald Räcke
    • 1
  • Chintan Shah
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations