Advertisement

Solving Multicut Faster Than 2n

  • Daniel Lokshtanov
  • Saket Saurabh
  • Ondřej Suchý
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)

Abstract

In the Multicut problem, we are given an undirected graph G = (V,E) and a family \(\mathcal{T} = \{({s_i}{t_i}) \mid s_i, t_i \in V\}\) of pairs of requests and the objective is to find a minimum sized set S ⊆ V such that every connected component of G ∖ S contains at most one of s i and t i for any pair \(({s_i}{t_i})\in \mathcal{T}\). In this paper we give the first non-trivial algorithm for Multicut running in time  \(\mathcal{O}(1.987^n)\).

Keywords

Vertex Cover Recursive Call Reduction Rule Unique Game Conjecture Multicut Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 459–468. ACM, New York (2011), http://doi.acm.org/10.1145/1993636.1993698 Google Scholar
  2. 2.
    Cǎlinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. Journal of Algorithms 48(2), 333–359 (2003), http://www.sciencedirect.com/science/article/pii/S0196677403000737
  3. 3.
    Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Computational Complexity 15(2), 94–114 (2006), http://dx.doi.org/10.1007/s00037-006-0210-9 CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)Google Scholar
  5. 5.
    Chitnis, R., Fomin, F., Lokshtanov, D., Misra, P., Ramanujan, M., Saurabh, S.: Faster exact algorithms for some terminal set problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 150–162. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-319-03898-8_14 CrossRefGoogle Scholar
  6. 6.
    Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. In: Rabani, Y. (ed.) SODA, pp. 1713–1725. SIAM (2012)Google Scholar
  7. 7.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009), http://doi.acm.org/10.1145/1552285.1552286
  10. 10.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Fomin, F., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. Algorithmica 69(1), 216–231 (2014), http://dx.doi.org/10.1007/s00453-012-9731-6 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997), http://dx.doi.org/10.1007/BF02523685 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-28050-4_4 CrossRefGoogle Scholar
  14. 14.
    Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: STOC, pp. 469–478 (2011)Google Scholar
  16. 16.
    Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, flowers and vertex cover. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 382–393. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Robson, J.: Algorithms for maximum independent sets. Journal of Algorithms 7(3), 425–440 (1986), http://www.sciencedirect.com/science/article/pii/0196677486900325 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Xiao, M., Nagamochi, H.: An improved exact algorithm for undirected feedback vertex set. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 153–164. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-319-03780-6_14 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Lokshtanov
    • 1
  • Saket Saurabh
    • 1
    • 2
  • Ondřej Suchý
    • 3
  1. 1.University of BergenNorway
  2. 2.Institute of Mathematical SciencesChennaiIndia
  3. 3.Faculty of Information TechnologyCzech Technical University in PragueCzech Republic

Personalised recommendations