Convex Hulls under Uncertainty

  • Pankaj K. Agarwal
  • Sariel Har-Peled
  • Subhash Suri
  • Hakan Yıldız
  • Wuzhou Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)


We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input point is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β-hull that may be a useful representation of uncertain hulls.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest neighbor searching under uncertainty II. In: Proc. 32nd ACM Sympos. Principles Database Syst., pp. 115–126 (2013)Google Scholar
  2. 2.
    Agarwal, P.K., Cheng, S., Tao, Y., Yi, K.: Indexing uncertain data. In: Proc. 28th ACM Sympos. Principles Database Syst., pp. 137–146 (2009)Google Scholar
  3. 3.
    Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under uncertainty. CoRR abs/1406.6599 (2014),
  4. 4.
    Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. ACM Trans. Algo. 5(1), 5:1–5:20 (2008)Google Scholar
  5. 5.
    Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(1), 145–158 (1993)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1), 76–90 (1985)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)CrossRefGoogle Scholar
  8. 8.
    Jørgensen, A., Löffler, M., Phillips, J.: Geometric computations on indecisive points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 536–547 (2011)Google Scholar
  9. 9.
    Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for stochastic points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 548–559 (2011)Google Scholar
  10. 10.
    Kamousi, P., Chan, T., Suri, S.: Stochastic minimum spanning trees in euclidean spaces. In: Proc. 27th Annu. Sympos. Comput. Geom., pp. 65–74 (2011)Google Scholar
  11. 11.
    Löffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Dept. Computer Sci. (2009)Google Scholar
  12. 12.
    Matoušek, J.: Computing the center of planar point sets. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Computational Geometry: Papers from the DIMACS Special Year, pp. 221–230. Amer. Math. Soc. (1991)Google Scholar
  13. 13.
    Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proc. 8th Annu. Sympos. Comput. Geom, pp. 16–25 (1992)Google Scholar
  14. 14.
    Phillips, J.: Small and Stable Descriptors of Distributions for Geometric Statistical Problems. Ph.D. thesis, Dept. Computer Sci. (2009)Google Scholar
  15. 15.
    Seidel, R.: Convex hull computations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 495–512. CRC Press (2004)Google Scholar
  16. 16.
    Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points. In: Proc. 21st Annu. European Sympos. Algorithms, pp. 791–802 (2013)Google Scholar
  17. 17.
    Zhao, Z., Yan, D., Ng, W.: A probabilistic convex hull query tool. In: Proc. 15th Int. Conf. on Ext. Database Tech., pp. 570–573 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Sariel Har-Peled
    • 2
  • Subhash Suri
    • 3
  • Hakan Yıldız
    • 3
  • Wuzhou Zhang
    • 1
  1. 1.Duke UniversityUSA
  2. 2.University of IllinoisUrbana-ChampaignUSA
  3. 3.University of CaliforniaSanta BarbaraUSA

Personalised recommendations