Advertisement

Convex Hulls under Uncertainty

  • Pankaj K. Agarwal
  • Sariel Har-Peled
  • Subhash Suri
  • Hakan Yıldız
  • Wuzhou Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)

Abstract

We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input point is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β-hull that may be a useful representation of uncertain hulls.

Keywords

Convex Hull Query Point Membership Probability Membership Query Radial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest neighbor searching under uncertainty II. In: Proc. 32nd ACM Sympos. Principles Database Syst., pp. 115–126 (2013)Google Scholar
  2. 2.
    Agarwal, P.K., Cheng, S., Tao, Y., Yi, K.: Indexing uncertain data. In: Proc. 28th ACM Sympos. Principles Database Syst., pp. 137–146 (2009)Google Scholar
  3. 3.
    Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under uncertainty. CoRR abs/1406.6599 (2014), http://arxiv.org/abs/1406.6599
  4. 4.
    Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. ACM Trans. Algo. 5(1), 5:1–5:20 (2008)Google Scholar
  5. 5.
    Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(1), 145–158 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25(1), 76–90 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)CrossRefGoogle Scholar
  8. 8.
    Jørgensen, A., Löffler, M., Phillips, J.: Geometric computations on indecisive points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 536–547 (2011)Google Scholar
  9. 9.
    Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for stochastic points. In: Proc. 12th Workshop Algorithms Data Struct., pp. 548–559 (2011)Google Scholar
  10. 10.
    Kamousi, P., Chan, T., Suri, S.: Stochastic minimum spanning trees in euclidean spaces. In: Proc. 27th Annu. Sympos. Comput. Geom., pp. 65–74 (2011)Google Scholar
  11. 11.
    Löffler, M.: Data Imprecision in Computational Geometry. Ph.D. thesis, Dept. Computer Sci. (2009)Google Scholar
  12. 12.
    Matoušek, J.: Computing the center of planar point sets. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Computational Geometry: Papers from the DIMACS Special Year, pp. 221–230. Amer. Math. Soc. (1991)Google Scholar
  13. 13.
    Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proc. 8th Annu. Sympos. Comput. Geom, pp. 16–25 (1992)Google Scholar
  14. 14.
    Phillips, J.: Small and Stable Descriptors of Distributions for Geometric Statistical Problems. Ph.D. thesis, Dept. Computer Sci. (2009)Google Scholar
  15. 15.
    Seidel, R.: Convex hull computations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 495–512. CRC Press (2004)Google Scholar
  16. 16.
    Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points. In: Proc. 21st Annu. European Sympos. Algorithms, pp. 791–802 (2013)Google Scholar
  17. 17.
    Zhao, Z., Yan, D., Ng, W.: A probabilistic convex hull query tool. In: Proc. 15th Int. Conf. on Ext. Database Tech., pp. 570–573 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pankaj K. Agarwal
    • 1
  • Sariel Har-Peled
    • 2
  • Subhash Suri
    • 3
  • Hakan Yıldız
    • 3
  • Wuzhou Zhang
    • 1
  1. 1.Duke UniversityUSA
  2. 2.University of IllinoisUrbana-ChampaignUSA
  3. 3.University of CaliforniaSanta BarbaraUSA

Personalised recommendations