GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem

  • Alexandros Efentakis
  • Dieter Pfoser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)

Abstract

Many existing solutions focus on point-to-point shortest-path queries in road networks. In contrast, only few contributions address the related single-source shortest-path problem, i.e., finding shortest-path distances from a single source s to all other graph vertices. This work extends graph separator methods to handle this specific problem and its one-to-many variant, i.e., calculating the shortest path distances from a single source to a set of targets T ⊆ V. This novel family of so-called GRASP algorithms provides exceptional preprocessing times, making them suitable for dynamic travel time scenarios. GRASP algorithms also efficiently solve range / isochrone queries not handled by previous approaches.

Keywords

Shortest-path computation GRASP algorithm Range queries Isochrones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.: Route planning in transportation networks. Technical Report MSR-TR-2014-4 (January 2014)Google Scholar
  2. 2.
    Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: SIGSPATIAL/GIS, pp. 54–63 (2013)Google Scholar
  3. 3.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.F.: Phast: Hardware-accelerated shortest path trees. In: IPDPS, pp. 921–931 (2011)Google Scholar
  4. 4.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks. In: ATMOS, pp. 52–63 (2011)Google Scholar
  6. 6.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks. In: SIGSPATIAL/GIS, pp. 490–493 (2013)Google Scholar
  8. 8.
    Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Demetrescu, C., Goldberg, A.V., Johnson, D.: The shortest path problem. Ninth DIMACS implementation challenge. DIMACS Book 74. AMS (2009)Google Scholar
  10. 10.
    Efentakis, A., Brakatsoulas, S., Grivas, N., Lamprianidis, G., Patroumpas, K., Pfoser, D.: Towards a flexible and scalable fleet management service. In: CTS@SIGSPATIAL (2013)Google Scholar
  11. 11.
    Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones, traffic and demographics. In: SIGSPATIAL/GIS, pp. 538–541 (2013)Google Scholar
  12. 12.
    Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: CTS@SIGSPATIAL (2013)Google Scholar
  13. 13.
    Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources for shortest-path computation. In: SIGSPATIAL/GIS, pp. 434–437 (2012)Google Scholar
  14. 14.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer, Berlin (2008)Google Scholar
  17. 17.
    Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexandros Efentakis
    • 1
  • Dieter Pfoser
    • 2
  1. 1.Research Center “Athena”Greece
  2. 2.Department of Geography and GeoInformation ScienceGeorge Mason UniversityUSA

Personalised recommendations