Advertisement

Succinct Indices for Path Minimum, with Applications to Path Reporting

  • Timothy M. Chan
  • Meng He
  • J. Ian Munro
  • Gelin Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)

Abstract

In the path minimum query problem, we preprocess a tree on n weighted nodes, such that given an arbitrary path, we can locate the node with the smallest weight along this path. We design novel succinct indices for this problem; one of our index structures supports queries in O(α(m,n)) time, and occupies O(m) bits of space in addition to the space required for the input tree, where m is an integer greater than or equal to n and α(m,n) is the inverse-Ackermann function. These indices give us the first succinct data structures for the path minimum problem, and allow us to obtain new data structures for path reporting queries, which report the nodes along a query path whose weights are within a query range. We achieve three different time/space tradeoffs for path reporting by designing (a) an O(n)-word structure with \(O(\lg^\epsilon n + occ \cdot \lg^\epsilon n)\) query time, where occ is the number of nodes reported; (b) an \(O(n\lg\lg n)\)-word structure with \(O(\lg\lg n + occ \cdot \lg\lg n)\) query time; and (c) an \(O( n \lg^\epsilon n)\)-word structure with \(O(\lg\lg n + occ)\) query time. These tradeoffs match the state of the art of two-dimensional orthogonal range reporting queries [8] which can be treated as a special case of path reporting queries. When the number of distinct weights is much smaller than n, we further improve both the query time and the space cost of these three results.

Keywords

Minimum Span Tree Query Range Query Time Path Minimum Weighted Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Tech. rep., Tel Aviv University (1987)Google Scholar
  2. 2.
    Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1-3), 217–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bringmann, K., Larsen, K.G.: Succinct sampling from discrete distributions. In: STOC, pp. 775–782 (2013)Google Scholar
  6. 6.
    Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: Path minima queries in dynamic weighted trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 290–301. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)Google Scholar
  9. 9.
    Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  11. 11.
    Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. Algorithmica 68(3), 610–625 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text retrieval. J. Algorithms 48(1), 2–15 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families of trees. Algorithmica 68(1), 16–40 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput. Sci. 387(3), 348–359 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering. ACM Transactions on Algorithms 8(4), 42 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 140–149. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over large alphabets. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 537–547. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Kaplan, H., Shafrir, N.: Path minima in incremental unrooted trees. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 565–576. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    King, V.: A simpler minimum spanning tree verification algorithm. Algorithmica 18(2), 263–270 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: SODA, pp. 11–12 (2005)Google Scholar
  27. 27.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Pettie, S.: An inverse-ackermann type lower bound for online minimum spanning tree verification. Combinatorica 26(2), 207–230 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3(4) (2007)Google Scholar
  31. 31.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Timothy M. Chan
    • 1
  • Meng He
    • 2
  • J. Ian Munro
    • 1
  • Gelin Zhou
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Faculty of Computer ScienceDalhousie UniversityCanada

Personalised recommendations