Complexity of Higher-Degree Orthogonal Graph Embedding in the Kandinsky Model

  • Thomas Bläsius
  • Guido Brückner
  • Ignaz Rutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8737)


We show that finding orthogonal grid embeddings of plane graphs (planar with fixed combinatorial embedding) with the minimum number of bends in the so-called Kandinsky model (allowing vertices of degree > 4) is NP-complete, thus solving a long-standing open problem. On the positive side, we give an efficient algorithm for several restricted variants, such as graphs of bounded branch width and a subexponential exact algorithm for general plane graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl. 9, 159–180 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph embedding in the kandinsky model. CoRR abs/1405.2300 (2014)Google Scholar
  4. 4.
    Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68(4), 859–885 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. CoRR abs/1404.2943 (2014)Google Scholar
  6. 6.
    Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algorithms Appl. 16(3), 635–650 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geometry Appl. 22(3), 187–206 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–810 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Eiglsperger, M.: Automatic Layout of UML Class Diagrams: A Topology-Shape-Metrics Approach. Ph.D. thesis, Universität Tübingen (2003)Google Scholar
  11. 11.
    Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J., Jünger, M., Leipert, S., Klein, K., Mutzel, P., Siebenhaller, M.: Automatic layout of UML class diagrams in orthogonal style. Information Visualization 3(3), 189–208 (2004)CrossRefGoogle Scholar
  12. 12.
    Fößmeier, U., Kant, G., Kaufmann, M.: 2-visibility drawings of planar graphs. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 155–168. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. ACM Trans. Alg. 4(3), 30:1–30:13 (2008)Google Scholar
  16. 16.
    Klau, G.W., Mutzel, P.: Quasi-orthogonal drawing of planar graphs. Research Report MPI-I-98-1-013, Max-Planck-Institut für Informatik (1998)Google Scholar
  17. 17.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS 1980, pp. 270–281 (1980)Google Scholar
  18. 18.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. No. 81 in Discrete Mathematics and Its Applications. Chapman and Hall/CRC (2013) Google Scholar
  20. 20.
    Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst., Man, Cybern., Syst. 18, 61–79 (1988)CrossRefGoogle Scholar
  21. 21.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Bläsius
    • 1
  • Guido Brückner
    • 1
  • Ignaz Rutter
    • 1
    • 2
  1. 1.Faculty of InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations