Linearization of Median Genomes under DCJ

  • Shuai Jiang
  • Max A. Alekseyev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8701)

Abstract

Reconstruction of the median genome consisting of linear chromosomes from three given genomes is known to be intractable. There exist efficient methods for solving a relaxed version of this problem, where the median genome is allowed to have circular chromosomes. We propose a method for construction of an approximate solution to the original problem from a solution to the relaxed problem and prove a bound on its approximation accuracy. Our method also provides insights into the combinatorial structure of genome transformations with respect to appearance of circular chromosomes.

Keywords

DCJ median genome circular chromosome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sankoff, D., Cedergren, R.J., Lapalme, G.: Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. Journal of Molecular Evolution 7(2), 133–149 (1976)CrossRefGoogle Scholar
  2. 2.
    Kováč, J., Brejová, B., Vinař, T.: A practical algorithm for ancestral rearrangement reconstruction. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 163–174. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm approach. PLoS One 8(5), e62156 (2013)Google Scholar
  4. 4.
    Moret, B.M., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A New Implementation and Detailed Study of Breakpoint Analysis. In: Pacific Symposium on Biocomputing, vol. 6, pp. 583–594 (2001)Google Scholar
  5. 5.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Research 12(1), 26–36 (2002)Google Scholar
  6. 6.
    Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15(1), 93–113 (2003)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10(1), 120 (2009)CrossRefGoogle Scholar
  8. 8.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar
  9. 9.
    Alekseyev, M.A., Pevzner, P.A.: Multi-Break Rearrangements and Chromosomal Evolution. Theoretical Computer Science 395(2-3), 193–202 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Xu, A.W.: A fast and exact algorithm for the median of three problem: A graph decomposition approach. Journal of Computational Biology 16(10), 1369–1381 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Xu, A.W.: DCJ median problems on linear multichromosomal genomes: Graph representation and fast exact solutions. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 70–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Arndt, W., Tang, J.: An exact solver for the DCJ median problem. In: Pacific Symposium on Biocomputing, vol. 14, pp. 138–149 (2009)Google Scholar
  13. 13.
    Maňuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(suppl. 19), S11 (2012)Google Scholar
  14. 14.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16(12), 1557–1565 (2006)CrossRefGoogle Scholar
  15. 15.
    Muffato, M., Louis, A., Poisnel, C.-E., Crollius, H.R.: Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics 26(8), 1119–1121 (2010)CrossRefGoogle Scholar
  16. 16.
    Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: Dupcar: reconstructing contiguous ancestral regions with duplications. Journal of Computational Biology 15(8), 1007–1027 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. Journal of Computational Biology 15(8), 1117–1131 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences 65(3), 587–609 (2002)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Research 19(5), 943–957 (2009)CrossRefGoogle Scholar
  21. 21.
    Jiang, S., Avdeyev, P., Hu, F., Alekseyev, M.A.: Reconstruction of ancestral genomes in presence of gene gain and loss (2014) (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shuai Jiang
    • 1
  • Max A. Alekseyev
    • 1
  1. 1.Computational Biology InstituteThe George Washington UniversityAshburnU.S.A.

Personalised recommendations