Reconstructing Mutational History in Multiply Sampled Tumors Using Perfect Phylogeny Mixtures

  • Iman Hajirasouliha
  • Benjamin J. Raphael
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8701)

Abstract

High-throughput sequencing of cancer genomes have motivated the problem of inferring the ancestral history of somatic mutations that accumulate in cells during cancer progression. While the somatic mutation process in cancer cells meets the requirements of the classic Perfect Phylogeny problem, nearly all cancer sequencing studies do not sequence single cancerous cells, but rather thousands-millions of cells in a tumor sample. In this paper, we formulate the Perfect Phylogeny Mixture problem of inferring a perfect phylogeny given somatic mutation data from multiple tumor samples, each of which is a superposition of cells, or “species.” We prove that the Perfect Phylogeny Mixture problem is NP-hard, using a reduction from the graph coloring problem. Finally, we derive an algorithm to solve the problem.

Keywords

DNA sequencing Cancer genomics perfect phylogeny Graph coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Desper, R., Jiang, F., Kallioniemi, O.-P., Moch, H., Papadimitriou, C.H., Schäffer, A.A.: Inferring tree models for oncogenesis from comparative genome hybridization data. Journal of Computational Biology 6(1), 37–51 (1999)CrossRefGoogle Scholar
  3. 3.
    Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., McMichael, J.F., Wallis, J.W., Lu, C., Shen, D., Harris, C.C., Dooling, D.J., Fulton, R.S., Fulton, L.L., Chen, K., Schmidt, H., Kalicki-Veizer, J., Magrini, V.J., Cook, L., McGrath, S.D., Vickery, T.L., Wendl, M.C., Heath, S., Watson, M.A., Link, D.C., Tomasson, M.H., Shannon, W.D., Payton, J.E., Kulkarni, S., Westervelt, P., Walter, M.J., Graubert, T.A., Mardis, E.R., Wilson, R.K., DiPersio, J.F.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–510 (2012)CrossRefGoogle Scholar
  4. 4.
    Ding, L., Raphael, B.J., Chen, F., Wendl, M.C.: Advances for studying clonal evolution in cancer. Cancer Lett. (January 2013)Google Scholar
  5. 5.
    Eberwine, J., Sul, J.-Y., Bartfai, T., Kim, J.: The promise of single-cell sequencing. Nat. Methods 11(1), 25–27 (2014)CrossRefGoogle Scholar
  6. 6.
    Fernandez-Baca, D.: The Perfect Phylogeny Problem (retrieved September 30, 2012)Google Scholar
  7. 7.
    Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)CrossRefGoogle Scholar
  8. 8.
    Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology (1997)Google Scholar
  10. 10.
    Hajirasouliha, I., Mahmoody, A., Raphael, B.J.: A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30(12), 78–86 (2014)CrossRefGoogle Scholar
  11. 11.
    Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., Wu, H., Ye, X., Ye, C., Wu, R., Jian, M., Chen, Y., Xie, W., Zhang, R., Chen, L., Liu, X., Yao, X., Zheng, H., Yu, C., Li, Q., Gong, Z., Mao, M., Yang, X., Yang, L., Li, J., Wang, W., Lu, Z., Gu, N., Laurie, G., Bolund, L., Kristiansen, K., Wang, J., Yang, H., Li, Y., Zhang, X., Wang, J.: Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5), 873–885 (2012)CrossRefGoogle Scholar
  12. 12.
    Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., Leiserson, M.M., Miller, C.A., Welch, J.S., Walter, M.J., Wendl, M.C., Ley, T.J., Wilson, R.K., Raphael, B.J., Ding, L.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)CrossRefGoogle Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  14. 14.
    Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., Kiezun, A., Hammerman, P.S., McKenna, A., Drier, Y., Zou, L., Ramos, A.H., Pugh, T.J., Stransky, N., Helman, E., Kim, J., Sougnez, C., Ambrogio, L., Nickerson, E., Shefler, E., Cortés, M.L., Auclair, D., Saksena, G., Voet, D., Noble, M., DiCara, D., Lin, P., Lichtenstein, L., Heiman, D.I., Fennell, T., Imielinski, M., Hernandez, B., Hodis, E., Baca, S., Dulak, A.M., Lohr, J., Landau, D.-A., Wu, C.J., Melendez-Zajgla, J., Hidalgo-Miranda, A., Koren, A., McCarroll, S.A., Mora, J., Lee, R.S., Crompton, B., Onofrio, R., Parkin, M., Winckler, W., Ardlie, K., Gabriel, S.B., Roberts, C.M., Biegel, J.A., Stegmaier, K., Bass, A.J., Garraway, L.A., Meyerson, M., Golub, T.R., Gordenin, D.A., Sunyaev, S., Lander, E.S., Getz, G.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)CrossRefGoogle Scholar
  15. 15.
    Nik-Zainal, S., Van Loo, P., Wedge, D.C., Alexandrov, L.B., Greenman, C.D., Lau, K.W., Raine, K., Jones, D., Marshall, J., Ramakrishna, M., Shlien, A., Cooke, S.L., Hinton, J., Menzies, A., Stebbings, L.A., Leroy, C., Jia, M., Rance, R., Mudie, L.J., Gamble, S.J., Stephens, P.J., McLaren, S., Tarpey, P.S., Papaemmanuil, E., Davies, H.R., Varela, I., McBride, D.J., Bignell, G.R., Leung, K., Butler, A.P., Teague, J.W., Martin, S., Jonsson, G., Mariani, O., Boyault, S., Miron, P., Fatima, A., Langerod, A., Aparicio, S.A., Tutt, A., Sieuwerts, A.M., Borg, A., Thomas, G., Salomon, A.V., Richardson, A.L., Borresen-Dale, A.L., Futreal, P.A., Stratton, M.R., Campbell, P.J.: The life history of 21 breast cancers. Cell 149(5), 994–1007 (2012)CrossRefGoogle Scholar
  16. 16.
    Nowell, P.C.: The clonal evolution of tumor cell populations. Science 194(4260), 23–28 (1976)CrossRefGoogle Scholar
  17. 17.
    Salari, R., Saleh, S.S., Kashef-Haghighi, D., Khavari, D., Newburger, D.E., West, R.B., Sidow, A., Batzoglou, S.: Inference of tumor phylogenies with improved somatic mutation discovery. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds.) RECOMB 2013. LNCS, vol. 7821, pp. 249–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Schuh, A., Becq, J., Humphray, S., Alexa, A., Burns, A., Clifford, R., Feller, S.M., Grocock, R., Henderson, S., Khrebtukova, I., Kingsbury, Z., Luo, S., McBride, D., Murray, L., Menju, T., Timbs, A., Ross, M., Taylor, J., Bentley, D.: Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120(20), 4191–4196 (2012)CrossRefGoogle Scholar
  19. 19.
    Shah, S.P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding, J., Tse, K., Haffari, G., Bashashati, A., Prentice, L.M., Khattra, J., Burleigh, A., Yap, D., Bernard, V., McPherson, A., Shumansky, K., Crisan, A., Giuliany, R., Heravi-Moussavi, A., Rosner, J., Lai, D., Birol, I., Varhol, R., Tam, A., Dhalla, N., Zeng, T., Ma, K., Chan, S.K., Griffith, M., Moradian, A., Cheng, S.W., Morin, G.B., Watson, P., Gelmon, K., Chia, S., Chin, S.F., Curtis, C., Rueda, O.M., Pharoah, P.D., Damaraju, S., Mackey, J., Hoon, K., Harkins, T., Tadigotla, V., Sigaroudinia, M., Gascard, P., Tlsty, T., Costello, J.F., Meyer, I.M., Eaves, C.J., Wasserman, W.W., Jones, S., Huntsman, D., Hirst, M., Caldas, C., Marra, M.A., Aparicio, S.: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403), 395–399 (2012)Google Scholar
  20. 20.
    Strino, F., Parisi, F., Micsinai, M., Kluger, Y.: TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 41(17), e165 (2013)Google Scholar
  21. 21.
    Warnow, T.: Some combinatorial problems in phylogenetics. In: Invited paper, Proceedings of the International Colloquium on Combinatorics and Graph Theory, Balatonlelle, Hungary (1999)Google Scholar
  22. 22.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)CrossRefGoogle Scholar
  23. 23.
    Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., He, W., Zeng, L., Xing, M., Wu, R., Jiang, H., Liu, X., Cao, D., Guo, G., Hu, X., Gui, Y., Li, Z., Xie, W., Sun, X., Shi, M., Cai, Z., Wang, B., Zhong, M., Li, J., Lu, Z., Gu, N., Zhang, X., Goodman, L., Bolund, L., Wang, J., Yang, H., Kristiansen, K., Dean, M., Li, Y., Wang, J.: Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5), 886–895 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iman Hajirasouliha
    • 1
  • Benjamin J. Raphael
    • 1
  1. 1.Department of Computer Science and Center for Computational Molecular BiologyBrown UniversityProvidenceUSA

Personalised recommendations