Advertisement

Activity-Based Discrete Event Simulation of Spatial Production Systems: Application to Fisheries

  • Eric Innocenti
  • Paul-Antoine Bisgambiglia
  • Dominique Urbani
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 440)

Abstract

In this paper, we present a modular and generic object framework using the Discrete EVent system Simulation Specification (DEVS) and the activity concept. We plan to simulate coastal fishery policies in the aim of improving harvesting and the management of fisheries.

Keywords

Spatial Production Systems Cellular Automata Model DEVS 

References

  1. 1.
    Klemas, V.: Fisheries applications of remote sensing: An overview. Fish. Res. 148, 124–136 (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Xu, S., Qiu, Y., Lin, Z., Jia, X.: Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100(3), 222–229 (2009)Google Scholar
  3. 3.
    Pelletieret, D., Mahévas, S.: Spatially explicit fisheries simulation models for policy evaluation. Fish Fish. 6(4), 307–349 (2005)CrossRefGoogle Scholar
  4. 4.
    Johnson, B.L.: Applying Computer Simulation Models as Learning Tools in Fishery Management. North Am. J. Fish. Manag. 15(4), 736–747 (1995)CrossRefGoogle Scholar
  5. 5.
    Innocenti, E.: Randomizing activity in fire spreading simulations. In: ITM Web Conf., vol. 1, p. 02003 (2013)Google Scholar
  6. 6.
    Innocenti, E., Muzy, A., Aiello, A., Santucci, J.-F., Hill, D.R.C.: Active-DEVS: a computational model for the simulation of forest fire propagation. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1857–1863 (2004)Google Scholar
  7. 7.
    von Neumann, J.: John von Neumann-Collected Works. VolumeV: Design of Computers. In: Taub, H. (ed.) Theory of Automata and Numerical Analysis, pp. 288–328. Pergamon Press (1961)Google Scholar
  8. 8.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press (2000)Google Scholar
  9. 9.
    Muzyet, A., Hill, D.R.C.: What is new with the activity world view in modeling and simulation? using activity as a unifying guide for modeling and simulation. In: Proceedings of the 2011 Winter Simulation Conference (WSC), pp. 2882–2894 (2011), doi:10.1109/WSC.2011.6147991Google Scholar
  10. 10.
    Santé, A., García, M., Miranda, D., Crecente, R.: Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 96(2), 108–122 (2010)CrossRefGoogle Scholar
  11. 11.
    Podrouzek, J.: Stochastic Cellular Automata in Dynamic Environmental Modeling: Practical Applications. Electron. Notes Theor. Comput. Sci. 252, 143–156 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Guinot, V.: Modelling using stochastic, finite state cellular automata: rule in ference from continuummodels. Appl. Math. Model 26(6), 701–714 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Krougly, Z.L., Creed, I.F., Stanford, D.A.: Astochastic model for generating disturbance patterns within landscapes. Comput. Geosci. 35(7), 1451–1459 (2009)CrossRefGoogle Scholar
  14. 14.
    Zeigler, B.P., Jammalamadaka, R., Akerkar, S.R.: Continuity and Change (Activity) Are Fundamentally Related in DEVS Simulation of Continuous Systems. In: Kim, T.G. (ed.) AIS 2004. LNCS (LNAI), vol. 3397, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Qiuet, F., Hu, X.: Spatial activity-based modeling for pedestrian crow dsimulation. Simulation 89(4), 451–465 (2013)CrossRefGoogle Scholar
  16. 16.
    Bolducet, J.-S., Vangheluwe, H.: A modeling and simulation package for classichierar-chical DEVS. MSDL Sch. Comput. McGillUniv. Tech. Rep. (2002)Google Scholar
  17. 17.
    Franceschini, R., Bisgambiglia, P.-A., Hill, D.R.C.: DEVS-Ruby:a Domain Specific Language for DEVS Modelingand Simulation (WIP). In: CD Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, DEVS 2014. SCS, Tampa (2014)Google Scholar
  18. 18.
    Wainer, G., Giambiasi, N.: Application of the Cell-DEVS Paradigm for Cell Spaces Modelling and Simulation. Simulation 76(1), 22–39 (2001), doi:10.1177/003754970107600102CrossRefGoogle Scholar
  19. 19.
    Fox Jr., W.W.: An exponential surplusyield model for optimizing exploited fish populations. Transactions of the American Fisheries Society 99(1), 80–88 (1970)CrossRefGoogle Scholar
  20. 20.
    Pella, J.J., Tomlinson, P.K.: A generalized stock production model. Inter-American Tropical Tuna Commission Bulletin 13(3), 416–497 (1969)Google Scholar
  21. 21.
    Duboz, R., Versmisse, D., Quesnel, G., Muzy, A., Ramat, E.: Specification of dynamic structure discrete event multiagent systems. In: Proceedings of SCS summer simulation 2006, Simulationseries, vol. 38(2), p. 103 (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Eric Innocenti
    • 1
  • Paul-Antoine Bisgambiglia
    • 1
  • Dominique Urbani
    • 1
  1. 1.UMR 6134 SPE CNRS, 20250 CORTEUniversity of Corsica UCPPFrance

Personalised recommendations