Advertisement

Rule-Based Impact Analysis for Enterprise Business Intelligence

  • Kalle Tomingas
  • Tanel Tammet
  • Margus Kliimask
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 437)

Abstract

We address several common problems in the field of Business Intelligence, Data Warehousing and Decision Support Systems: the complexity to manage, track and understand data lineage and system component dependencies in long series of data transformation chains. The paper presents practical methods to calculate meaningful data transformation and component dependency paths, based on program parsing, heuristic impact analysis, probabilistic rules and semantic technologies. Case studies are employed to explain further data aggregation and visualization of the results to address different planning and decision support problems for various user profiles like business users, managers, data stewards, system analysts, designers and developers.

Keywords

impact analysis data lineage data warehouse rule-based reasoning probabilistic reasoning semantics 

References

  1. 1.
    Cook, D.: Gold parsing system (2010), http://www.goldparser.org
  2. 2.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Transactions on Database Systems (TODS) 25(2), 179–227 (2000)CrossRefGoogle Scholar
  3. 3.
    Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB Journal—The International Journal on Very Large Data Bases 12(1), 41–58 (2003)CrossRefGoogle Scholar
  4. 4.
    de Santana, A.S., de Carvalho Moura, A.M.: Metadata to support transformations and data & metadata lineage in a warehousing environment. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 249–258. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Fan, H., Poulovassilis, A.: Using AutoMed metadata in data warehousing environments. In: Proceedings of the 6th ACM International Workshop on Data Warehousing and OLAP, pp. 86–93. ACM (November 2003)Google Scholar
  6. 6.
    Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decision Support Systems 45(1), 4–21 (2008)CrossRefGoogle Scholar
  7. 7.
    Luberg, A., Tammet, T., Järv, P.: Smart City: A Rule-based Tourist Recommendation System. In: Information and Communication Technologies in Tourism 2011, pp. 51–62. Springer Vienna (2011)Google Scholar
  8. 8.
    Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.: Data Lineage Model for Taverna Workflows with Lightweight Annotation Requirements. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Priebe, T., Reisser, A., Hoang, D.T.A.: Reinventing the Wheel?! Why Harmonization and Reuse Fail in Complex Data Warehouse Environments and a Proposed Solution to the Problem (2011)Google Scholar
  10. 10.
    Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Transactions on Software Engineering 27(1), 58–93 (2001)CrossRefGoogle Scholar
  11. 11.
    Reisser, A., Priebe, T.: Utilizing Semantic Web Technologies for Efficient Data Lineage and Impact Analyses in Data Warehouse Environments. In: Database and Expert Systems Application, DEXA 2009, pp. 59–63 (August 2009)Google Scholar
  12. 12.
    Skoutas, D., Simitsis, A.: Ontology-based conceptual design of ETL processes for both structured and semi-structured data. International Journal on Semantic Web and Information Systems (IJSWIS) 3(4), 1–24 (2007)CrossRefGoogle Scholar
  13. 13.
    Tomingas, K., Kliimask, M., Tammet, T.: Mappings, Rules and Patterns in Template Based ETL Construction. In: The 11th International Baltic DB & IS2014 Conference (2014)Google Scholar
  14. 14.
    Tomingas, K., Kliimask, M., Tammet, T.: Data Integration Patterns for Data Warehouse Automation. In: The 18th East-European ADBIS 2014 Conference (2014)Google Scholar
  15. 15.
    Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual modeling for ETL processes. In: Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP, pp. 14–21. ACM (November 2002)Google Scholar
  16. 16.
    Wang Baldonado, M.Q., Woodruff, A., Kuchinsky, A.: Guidelines for using multiple views in information visualization. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 110–119. ACM (May 2000)Google Scholar
  17. 17.
    MMX Metadata Framework, http://mmxframework.org
  18. 18.
    XDTL Data Transformation Language, http://xdtl.org

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Kalle Tomingas
    • 1
  • Tanel Tammet
    • 1
  • Margus Kliimask
    • 2
  1. 1.Tallinn University of TechnologyTallinnEstonia
  2. 2.Eliko Competence CenterTallinnEstonia

Personalised recommendations