Energy Harvesting from Pavements

  • Andrew DawsonEmail author
  • Rajib Mallick
  • Alvaro García Hernandez
  • Pejman Keikhaei Dehdezi
Part of the Green Energy and Technology book series (GREEN)


Against a background of the immense solar radiation incident with available pavement surfaces, the opportunity for energy to be harvested from pavements is investigated. While the emphasis is on the harvesting of solar-derived heat energy, some attention is also paid to the collection of energy derived from displacement of the pavement by traffic and to solar energy converted directly to electricity via photovoltaic systems embedded in pavements. Basic theory of heat collection is covered along with a discussion of the relevant thermal properties of pavement materials that affect heat transmission and storage in a pavement. Available technologies for pavement energy harvesting are reviewed and some of their advantages and limitations reviewed. The chapter continues with some descriptions of the ways in which the harvested energy can be stored and then used before ending with sections on evaporative cooling of pavements and system evaluation.


Heat Pipe Specific Heat Capacity Heat Pump Urban Heat Island Phase Change Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

309280_1_En_18_MOESM1_ESM.xlsm (6.5 mb)
Supplementary material 1 (XLSM 6680 kb)


  1. Akbari, H. (1995). Cooling our communities: An overview of heat island project activities. Annual report. Berkeley: Heat Island Group, Lawrence Berkeley National Laboratory.Google Scholar
  2. Akbari, H. (2005). Energy saving potentials and air quality benefits of urban heat Island mitigation. Report LBNL-58285. Lawrence Berkeley National Laboratory.Google Scholar
  3. Armstrong, F., & Blundell, K. (2007). Energy…beyond oil. Oxford: Oxford University Press.Google Scholar
  4. Athienitis, A. K., Liu, C., Hawes, D., Banu, D., & Feldman, D. (1997). Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment, 32(5), 405–410.CrossRefGoogle Scholar
  5. Banks, D. (2008). An introduction to thermogeology: Ground source heating and cooling. Oxford: Blackwell Publishing Ltd.Google Scholar
  6. Bentz, D. P., & Turpin, R. (2007). Potential applications of phase change materials in concrete technology. Cement and Concrete Composites, 29(7), 527–532.CrossRefGoogle Scholar
  7. Bo, G., Biao, M., & Fang, Q. (2011). Application of asphalt pavement with phase change materials to mitigate urban heat Island effect. In Proceedings of International Symposium on Water Resource and Environmental Protection (ISWREP), May, Xian, Shaanxi, China.Google Scholar
  8. Botts, M., & Mouw, I. (2013). Here comes the sun (pp. 19–21). Fredericksburg: International Parking Institute.Google Scholar
  9. Busby, J., Lewis, M., Reeves, H., & Lawley, R. (2009). Initial geological consideration before installing ground source heat pump systems. Journal of Engineering Geology and Hydrogeology, 42, 295–306.CrossRefGoogle Scholar
  10. Cambridge Systematics. (2005). Cool pavement report, EPA cool pavements study—task 5.
  11. Carder, D. R., Barker K. J., Hewitt, M. G., Ritter, D., & Kiff, A. (2007). Performance of an interseasonal heat transfer facility for collection, storage, and re-use of solar heat from the road surface. Crowthorne: Transport Research Laboratory, Published Project Report PPR 302.Google Scholar
  12. Côté, J., & Konrad, J. M. (2005). Thermal conductivity of base-course materials. Canadian Geotechnical Journal, 42(1), 61–78.CrossRefGoogle Scholar
  13. Dawson, A. R., Keikhaei Dehdezi, P., Hall, M. R., Wang, J., & Isola, R. (2012). Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design, 13(4), 784–803.Google Scholar
  14. de Bondt, A. (2003). Generation of Energy via Asphalt Pavement Surfaces. Asphaltica Padova 2003.Google Scholar
  15. de Wild-Scholten, M. J. (2013). Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Materials and Solar Cells, 119, 296–305.Google Scholar
  16. Duarte, F., Casimiro, F., Correia, D., Mendes, R., & Ferreira, A. (2013). Waynergy people: A new pavement energy harvest system. Municipal Engineer, Institute of Civil Engineers, 166(4), 250–256.Google Scholar
  17. Entrop, A. G., Brouwers, H. J. H., & Reinders, A. H. M. E. (2011). Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Solar Energy, 85(5), 1007–1020.CrossRefGoogle Scholar
  18. Ewing, R. P., & Horton, R. (2007). Thermal conductivity of a cubic lattice of spheres with capillary bridges. Journal of Physics D: Applied Physics, 40(16), 4959–4965.Google Scholar
  19. Garcia, A., & Partl, M. N. (2014) How to transform an asphalt concrete pavement into a solar turbine. Applied Energy, 119(C), 431–437.Google Scholar
  20. Hall, M. R., Keikhaei Dehdezi, P., Dawson, A. R., Grenfell, J., & Isola, R. (2012). Influence of the thermo-physical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Engineering, 24(1), 32–47.CrossRefGoogle Scholar
  21. Hasebe, M., Kamikawa, Y., & Meiarashi, S. (2006). Thermoelectric generators using solar thermal energy in heated road pavement. In 25th International Conference on Thermoelectrics.Google Scholar
  22. Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., & Founti, M. (2009). The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10), 731–743.CrossRefGoogle Scholar
  23. James, W. (2002). Green roads: research into permeable pavers. Stormwater, 3(2), 40–48.Google Scholar
  24. Keikhaei Dehdezi, P., Hall, M. R., & Dawson, A. R. (2011). Thermo-physical optimisation of specialised concrete pavement materials for surface heat energy collection and shallow heat storage applications. Transportation Research Record (Journal of the Transportation Research Board), 2240, 96–106.CrossRefGoogle Scholar
  25. Keikhaei Dehdezi, P. (2012). Enhancing pavements for thermal applications. PhD thesis, Department of Civil Engineering, University of Nottingham, p. 225.Google Scholar
  26. Keikhaei Dehdezi, P., Dawson, A. R., Hall, M. R., & Casey, S. (2012a). Investigate the feasibility of using asphalt pavements as a source of heating. 2nd International Symposium on Asphalt Pavements & Environment, 1st–3rd October, Fortaleza, Brazil.Google Scholar
  27. Keikhaei Dehdezi, P., Hall, M. R., & Dawson, A. R. (2012b). Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications. Applied Mechanics and Materials, 110–116, 1191–1198.Google Scholar
  28. Keikhaei Dehdezi, P., Hall, M. R., Dawson, A. R., & Casey, S. (2012c). Thermal, mechanical, and microstructural analysis of concrete containing microencapsulated phase change materials. International Journal of Pavement Engineering, 14(5), 1–14.Google Scholar
  29. Leong, W. H., Tarnawski, V. R., & Aittomäki, A. (1998). Effect of soil type and moisture content on ground heat pump performance: Effet du type et de l’humidité du sol sur la performance des pompes à chaleur à capteurs enterrés. International Journal of Refrigeration, 21(8), 595–606.CrossRefGoogle Scholar
  30. Lopes-Ferreira, A. J. (2012). Recent developments in pavement energy harvest systems. Municipal Engineer, Institution of Civil Engineers, 165(4), 189–192.CrossRefGoogle Scholar
  31. Lund, J. (2002). Pavement Snow Melting. Geo-Heat Center, Oregon Institute of Technology, Klamath Falls.
  32. Ma, B., Wang, S., & Li, J. (2010). Study on application of PCM in Asphalt mixture. Journal of Advanced Materials Research, 168–170, 2625–2630.CrossRefGoogle Scholar
  33. Mallick, R. B., Chen, B.-L., & Bhowmick, S. (2009). Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214–228.CrossRefGoogle Scholar
  34. Mallick, R., Carelli, J., Albano, L., Bhowmick, S., & Veeraragavan, A. (2011). Evaluation of the potential of harvesting heat energy from asphalt pavements. International Journal of Sustainable Engineering, 4(02), 164–171.CrossRefGoogle Scholar
  35. Mallick, R., & Bhowmick, S. (2013). Rise in pavement temperature—Making buildings part of the road infrastructure, capturing energy—Solutions, possibilities and challenges. Sustain, 29, 36–46.Google Scholar
  36. McGlen, R., Kew, P., & Rea, D. (2006). Heat pipes: Theory, design and applications (p. 384). Oxford: Butterworth-Heinemann.Google Scholar
  37. Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. Berlin: Springer.Google Scholar
  38. OKState. (2002). Geothermal Smart Bridge, What’s New.
  39. Park, D.-W., Dessouky, S., & Hwang, S.-D. (2014). Thermophysical properties of graphite-modified asphalt mixture and numerical analyses for snow melting pavement. In M. Losa & T. Papagiannakis (eds.) Chapter 10, Sustainability, eco-efficiency, and conservation in transportation infrastructure asset management (pp. 87–94). Boca Raton: CRC Press.Google Scholar
  40. Pavegen. (2012). Generating Energy from Footsteps. Pavegen Systems Ltd, UK.
  41. Read, J., & Whiteoak, D. (2003). The shell bitumen handbook. London: Thomas Telford Publishing.Google Scholar
  42. Rosenfeld, A. H., Romm, J. J., Akbari, H., Pomerantz, M., Taha, H. (1996). Policies to reduce heat islands: magnitudes of benefits and incentives to achieve them. Proceedings of 1996 LBL-38679, ACEEE summer study on energy efficiency in buildings (Vol. 9, pp. 177–186).Google Scholar
  43. Russell, R. (2007). Solar Energy in Earth’s Atmosphere.
  44. Sundberg, J. (1988). Thermal properties of soil and rocks. Linkoping: Swedish Geotechnical Institute.Google Scholar
  45. Tarnawski, R., Momose, T., & Leong, W. H. (2009). Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique, 59(4), 331–338.CrossRefGoogle Scholar
  46. Sánchez, P., Sánchez-Fernandez, M. V., Romero, A., Rodríguez, J. F., & Sánchez-Silva, L. (2010). Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochimica Acta, 498(1–2), 16–21.CrossRefGoogle Scholar
  47. Sedgwick, R. H. D., & Patrick, M. A. (1981). The use of a ground solar collector for swimming pool heating. Paper to 1st Solar World Forum, Brighton, England. Proceedings of International Solar Energy Society, 1, 632–636.Google Scholar
  48. Sullivan, C., de Bondt, A. H., Jansen, R., & Verweijmeren, H. (2007). Innovation in the production and commercial use of energy extracted from asphalt pavements. 6th Annual International Conference on Sustainable Aggregates, International Journal of Pavement Engineering and Asphalt Technology, 8(2). Liverpool.Google Scholar
  49. Takebayashi, H., & Moriyama, M. (2012). Study on surface heat budget of various pavements for urban heat island mitigation. Advances in Materials Science and Engineering, 2012 (523051), 11.Google Scholar
  50. Waydip. (2012). Waynergy. Waydip—Energia e Ambiente, Lda, Portugal.
  51. Wong, N. H., & Chen, Y. (2009). Tropical Urban Heat Islands. Abingdon: Taylor & Francis.Google Scholar
  52. Wu, S., Chen, M., & Zhang, J. (2011). Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs. Applied Thermal Engineering, 31(10), 1582–1587.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrew Dawson
    • 1
    Email author
  • Rajib Mallick
    • 2
  • Alvaro García Hernandez
    • 1
  • Pejman Keikhaei Dehdezi
    • 3
  1. 1.Nottingham Transportation Engineering CentreUniversity of NottinghamNottinghamUK
  2. 2.Department of Civil and Environmental EngineeringWorcester Polytechnic InstituteWorcesterUSA
  3. 3.URSNottinghamUK

Personalised recommendations