A New Framework for Constraint-Based Probabilistic Template Side Channel Attacks

  • Yossef Oren
  • Ofir Weisse
  • Avishai Wool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8731)

Abstract

The use of constraint solvers, such as SAT- or Pseudo-Boolean-solvers, allows the extraction of the secret key from one or two side-channel traces. However, to use such a solver the cipher must be represented at bit-level. For byte-oriented ciphers this produces very large and unwieldy instances, leading to unpredictable, and often very long, run times. In this paper we describe a specialized byte-oriented constraint solver for side channel cryptanalysis. The user only needs to supply code snippets for the native operations of the cipher, arranged in a flow graph that models the dependence between the side channel leaks. Our framework uses a soft decision mechanism which overcomes realistic measurement noise and decoder classification errors, through a novel method for reconciling multiple probability distributions. On the DPA v4 contest dataset our framework is able to extract the correct key from one or two power traces in under 9 seconds with a success rate of over 79%.

Keywords

Constraint solvers power analysis template attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Description of the masked AES of the DPA contest v4, http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf
  2. 2.
  3. 3.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Analysis 19(2), 187–203 (1999)Google Scholar
  7. 7.
    Elaabid, M.A., Guilley, S.: Practical improvements of profiled side-channel attacks on a hardware crypto-accelerator. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 243–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Guo, S., Zhao, X., Zhang, F., Wang, T., Shi, Z.J., Standaert, F., Ma, C.: Exploiting the incomplete diffusion feature: A specialized analytical side-channel attack against the aes and its application to microcontroller implementations. IEEE Transactions on Information Forensics and Security 9(6), 999–1014 (2014)CrossRefGoogle Scholar
  9. 9.
    Hill, T.: Conflations of probability distributions. Transactions of the American Mathematical Society 363(6), 3351–3372 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1771–1800 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kahn, J.M.: A generative bayesian model for aggregating experts’ probabilities. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 301–308. AUAI Press (2004)Google Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc., Secaucus (2007)Google Scholar
  14. 14.
    Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann, J.: Improved algebraic side-channel attack on AES. Journal of Cryptographic Engineering 3(3), 139–156 (2013)CrossRefGoogle Scholar
  15. 15.
    Information Technology Laboratory (National Institute of Standards and Technology). Announcing the Advanced Encryption Standard (AES). Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology Gaithersburg, MD (2001)Google Scholar
  16. 16.
    Oren, Y.: Secure hardware - physical attacks and countermeasures. PhD thesis, Tel-Aviv University, Isreal (2013), https://www.iacr.org/phds/?p=detail&entry=893
  17. 17.
    Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 428–442. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks with extremely low data complexity. In: Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, p. 7. ACM (2013)Google Scholar
  20. 20.
    Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear transforms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: Why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Stallings, W.: Cryptography and Network Security ch. 5, 6th edn. Pearson (2014)Google Scholar
  24. 24.
    Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate regression analysis. IEICE Electronics Express 7(15), 1139–1144 (2010)CrossRefGoogle Scholar
  25. 25.
    Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. Cryptology ePrint Archive, Report 2014/410 (2014), http://eprint.iacr.org/2014/410
  27. 27.
    Weisse, O.: Source code of our constraint solver as submitted to DPA v4 contest, http://www.ofirweisse.com see DPA v4
  28. 28.
    Zhao, X., Wang, T., Guo, S., Zhang, F., Shi, Z., Liu, H., Wu, K.: SAT based error tolerant algebraic side-channel attacks. In: 2011 Conference on Cryptographic Algorithms and Cryptographic Chips, CASC (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yossef Oren
    • 1
  • Ofir Weisse
    • 2
  • Avishai Wool
    • 3
  1. 1.Network Security LabColumbia UniversityUSA
  2. 2.School of Computer ScienceTel-Aviv UniversityIsrael
  3. 3.School of Electrical EngineeringTel-Aviv UniversityIsrael

Personalised recommendations