Prediction of 30-Day Mortality after a Hip Fracture Surgery Using Neural and Bayesian Networks

  • Dimitrios Galiatsatos
  • George C. Anastassopoulos
  • Georgios Drosos
  • Athanasios Ververidis
  • Konstantinos Tilkeridis
  • Konstantinos Kazakos
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 436)


Osteoporotic hip fractures have a significant morbidity and excess mortality among the elderly and have imposed huge health and economic burdens on societies worldwide. A medical database of 349 patients that have been operated for hip fracture has been analyzed. Two models of data were used in Multi-Layer Perceptrons, Radial Basis Function and Naïve Bayes networks, in order to predict the 30-day mortality after a hip fracture surgery and also to investigate which is the most appropriate risk factor between the New Mobility Score and Institution factor for the Greek population. The proposed method may be used as a screening tool that will assist orthopedics in the surgery of the hip fracture according to each different patient.


hip fracture artificial neural networks Bayesian networks 30-day mortality 


  1. 1.
    Chang, K.P., Center, J.R., Nguyen, T.V., Eisman, J.: Incidence of hip and other osteoporotic fractures in elderly men and women: Dubbo Osteoporosis Epidemiology Study. J. Bone Miner. Res. 19, 532–536 (2004)CrossRefGoogle Scholar
  2. 2.
    Court-Brown, C.M., Caesar, B.: Epidemiology of adult fractures: a review. Injury 37, 691–697 (2006)CrossRefGoogle Scholar
  3. 3.
    Dhanwal, D.K., Dennison, E.M., Harvey, N.C., Cooper, C.: Epidemiology of hip fracture: Worldwide geographic variation. Indian J. Orthop. 45, 15–22 (2011)CrossRefGoogle Scholar
  4. 4.
    Kannus, P., Parkkari, J., Sievänen, H., Heinonen, A., Vuori, I., Järvinen, M.: Epidemiology of hip fractures. Bone 18(suppl. 1), 57S–63S (1996)Google Scholar
  5. 5.
    Keene, G.S., Parker, M.J., Pryor, G.: Mortality and morbidity after hip fractures. BMJ 307(6914), 1248–1250 (1993)CrossRefGoogle Scholar
  6. 6.
    Braithwaite, R.S., Col, N.F., Wong, J.: Estimating hip fracture morbidity, mortality and costs. J. Am. Geriatr. Soc. 51, 364–370 (2003)CrossRefGoogle Scholar
  7. 7.
    Abrahamsen, B., van Staa, T., Ariely, R., et al.: Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 20, 1633–1650 (2009)CrossRefGoogle Scholar
  8. 8.
    Giversen, I.: Time trends of mortality after first hip fractures. Osteoporos Int. 18, 721–732 (2007)CrossRefGoogle Scholar
  9. 9.
    Haleem, S., Lutchman, L., Mayahi, R., Grice, J.E., Parker, M.: Mortality following hip fracture: trends and geographical variations over the last 40 years. Injury 39, 1157–1163 (2008)CrossRefGoogle Scholar
  10. 10.
    Sterling, R.: Gender and race/ethnicity differences in hip fracture incidence, morbidity, mortality, and function. Clin. Orthop. Relat. Res. 469(7), 1913–1918 (2011)CrossRefGoogle Scholar
  11. 11.
    Bass, E., French, D.D., Bradham, D.D., Rubenstein, L.: Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann. Epidemiol. 17, 514–519 (2007)CrossRefGoogle Scholar
  12. 12.
    Giversen, I.: Time trends of mortality after first hip fractures. Osteoporos Int. 18, 721–732 (2007)CrossRefGoogle Scholar
  13. 13.
    Maxwell, M.J., Moran, C.G., Moppett, I.: Development and validation of a preoperative scoring system to predict 30-day mortality in patients undergoing hip fracture surgery. Br. J. Anaesthesia 101, 511–517 (2008)CrossRefGoogle Scholar
  14. 14.
    Hu, F., Jiang, C., Shen, J., Tang, P., Wang, Y.: Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43(6), 676–685 (2012)CrossRefGoogle Scholar
  15. 15.
    Hannan, E.L., Magaziner, J., Wang, J.J., et al.: Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA 285, 2736–2742 (2001)CrossRefGoogle Scholar
  16. 16.
    Johansen, A., Mansor, M., Beck, S., et al.: Outcome following hip fracture: post-discharge residence and long-term mortality. Age Ageing 39, 653–656 (2010)CrossRefGoogle Scholar
  17. 17.
    Ozturk, A., Ozkan, Y., Akgoz, S., et al.: The risk factors for mortality in elderly patients with hip fractures: postoperative one-year results. Singapore Med. J. 51, 137–143 (2010)Google Scholar
  18. 18.
    Moppett, I.K., Parker, M., Griffiths, R., Bowers, T., White, S.M., Moran, C.: Nottingham Hip Fracture Score: longitudinal and multi-assessment. Br. J. Anaesth. 109(4), 546–550 (2012)CrossRefGoogle Scholar
  19. 19.
    Gunasekera, N., Boulton, C., Morris, C., Moran, C.: Hip fracture audit: the Nottingham experience. Osteoporos Int. 21(suppl. 4), S647–S653 (2010)Google Scholar
  20. 20.
    Parker, M.J., Palmer, C.: A new mobility score for predicting mortality after hip fracture. J. Bone Joint Surg. Br. 75(5), 797–798 (1993)Google Scholar
  21. 21.
    Tseng, W.-J., Hung, L.-W., Shieh, J.-S., Abbod, M.F., Lin, J.: Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskeletal Disorders 14, 207 (2013), doi:10.1186/1471-2474-14-207CrossRefGoogle Scholar
  22. 22. (last accesed April 21, 2014)
  23. 23.
    Breast Cancer Diagnosis on Three Different Datasets Using Multi-Classifiers. International Journal of Computer and Information TechnologyGoogle Scholar
  24. 24.
    Othman, M.F.B., Yau, T.M.S.: Comparison of Different Classification Techniques. Using WEKA for Breast CancerGoogle Scholar
  25. 25.
    Venkatesan, P., Anitha, S.: Application of a radial basis function neural network for diagnosis of diabetes mellitus. Tuberculosis Research Centre, ICMR, Chennai 600 031, IndiaGoogle Scholar
  26. 26.
    Del_can, Y., Özyilmaz, L., Yildirim, T.: Evolutionary Algorithms Based RBF Neural Networks For Parkinson’s Disease Diagnosis. In: ELECO 2011 7th International Conference on Electrical and Electronics Engineering, Bursa, Turkey, December 1-4 (2011)Google Scholar
  27. 27.
    Escaño, L.M.E., Saiz, G.S., Lorente, F.J.L., Fernando, Á.B., Ugarriza, J.M.V.: Logistic Regression Versus Neural Networks For Medical Data. Monografías del Seminario Matemático García de Galdeano 33, 245–252 (2006)Google Scholar
  28. 28.
    Comparison of Different Classification Methods Reihaneh Rabbany Khorasgani, Department of Computing Science, University of Alberta, Edmonton, CanadaGoogle Scholar
  29. 29.
    Tomar, D., Agarwal, S.: A survey on data mining approaches for healthcare. International Journal of BioScience and Biotechnology 5(5), 241–266 (2013)Google Scholar
  30. 30.
    Zhang, H.: The Optimality of Naïve Bayes, Faculty of Computer Science, University of New Brunswick, Fredericton, New Brunswick, CanadaGoogle Scholar
  31. 31.
    Langseth, H., Nielsen, T.: “Classification using Hierarchical Naïve Bayes models”. Machine Learning 63(2), 135–159 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, N.: Hierarchical latent class models for cluster analysis. In: 18th National Conference on Artificial Intelligence, pp. 230–237 (2002)Google Scholar
  33. 33.
    Diagnosis And Classification Of Hypothyroid Disease Using Data Mining, Techniques. International Journal of Engineering Research & Technology (IJERT)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Dimitrios Galiatsatos
    • 1
  • George C. Anastassopoulos
    • 1
  • Georgios Drosos
    • 2
  • Athanasios Ververidis
    • 2
  • Konstantinos Tilkeridis
    • 1
  • Konstantinos Kazakos
    • 2
  1. 1.Medical Informatics Laboratory, Medical SchoolDemocritus University of ThraceGreece
  2. 2.Department of OrthopedicsUniversity Hospital of Alexandroupolis, Medical School, Democritus University of ThraceGreece

Personalised recommendations