Advertisement

Peak Observer Based Self-tuning of Type-2 Fuzzy PID Controllers

  • Engin Yesil
  • Tufan Kumbasar
  • M. Furkan Dodurka
  • Ahmet Sakalli
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 436)

Abstract

Fuzzy PID (proportional-integral-derivative) controllers are commonly used as an alternative to the conventional PID controllers. In order to improve the control system performance of these controllers many self-tuning methods are already studied. It is mostly observed that the self-tuning mechanism should tune the scaling factors of the fuzzy controller to enhance the transient system performance. On the other hand, these studies only focus on the ordinary (Type-1) Fuzzy PID controllers. In this study, Type-2 Fuzzy PID controllers are studied and a peak observer based self-tuning method is proposed for these controllers. In order to show the benefit of the proposed approach, several Matlab simulations are performed where different type of fuzzy control structures are compared. The results obtained from the simulation studies clearly show the advantage of the proposed approach.

Keywords

Type-2 Fuzzy PID controllers self-tuning peak observer 

References

  1. 1.
    Galichet, S., Foulloy, L.: Fuzzy controllers: synthesis and equivalences. IEEE Transactions on Fuzzy Systems 3(2), 140–148 (1995)CrossRefGoogle Scholar
  2. 2.
    Huang, T.T., Chung, H.Y., Lin, J.J.: A fuzzy PID controller being like parameter varying PID. In: IEEE International Fuzzy Systems Conference Proceeding, vol. 1, pp. 269–275 (1999)Google Scholar
  3. 3.
    Qiao, W.Z., Mizumoto, M.: PID type fuzzy controller and parameters adaptive method. Fuzzy Sets and Systems 78(1), 23–35 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Li, H.X., Gatland, H.B.: Conventional fuzzy control and its enhancement. IEEE Transactions on Systems, Man and Cybernetics Part B 26(5), 791–797 (1996)CrossRefGoogle Scholar
  5. 5.
    Duan, X.G., Li, H.X., Deng, H.: Effective tuning method for fuzzy PID with internal model control. Industrial & Engineering Chemistry Research 47, 8317–8323 (2008)CrossRefGoogle Scholar
  6. 6.
    Hu, B., Mann, G.K.I., Gasine, R.G.: New methodology for analytical and optimal design of fuzzy PID controllers. IEEE Transactions on Fuzzy Systems 7(5), 521–539 (1999)CrossRefGoogle Scholar
  7. 7.
    Mudi, R.K., Pal, N.R.: A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems 7(1), 2–16 (1999)CrossRefGoogle Scholar
  8. 8.
    Woo, Z.W., Chung, H.Y., Lin, J.J.: A PID-type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Systems 115, 321–326 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guzelkaya, M., Eksin, I., Yesil, E.: Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer. Engineering Applications of Artificial Intelligence 16, 227–236 (2003)CrossRefGoogle Scholar
  10. 10.
    Ahn, K.K., Truong, D.Q.: Online tuning fuzzy PID controller using robust extended Kalman filter. Journal of Process Control 19, 1011–1023 (2009)CrossRefGoogle Scholar
  11. 11.
    Karasakal, O., Guzelkaya, M., Eksin, I., Yesil, E.: An error-based on-line rule weight adjustment method for fuzzy PID controllers. Expert Systems and Applications 38(8), 10124–10132 (2011)CrossRefGoogle Scholar
  12. 12.
    Karasakal, O., Guzelkaya, M., Eksin, I., Yesil, E., Kumbasar, T.: Online tuning of fuzzy PID controllers via rule weighting based on normalized acceleration. Engineering Applications of Artificial Intelligence 26(1), 184–197 (2013)CrossRefGoogle Scholar
  13. 13.
    Wu, D., Tan, W.W.: Interval Type-2 Fuzzy PI Controllers: Why They Are More Robust. In: IEEE International Conference on Granular Computing, pp. 802–807 (2010)Google Scholar
  14. 14.
    Wu, D.: On the Fundamental Differences between Type-1 and Interval Type-2 Fuzzy Logic Controllers. Transactions on Fuzzy Systems 20(5), 832–848 (2012)CrossRefGoogle Scholar
  15. 15.
    Hagras, H.: A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539 (2004)CrossRefGoogle Scholar
  16. 16.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  17. 17.
    Wu, D., Tan, W.W.: A simplified type-2 fuzzy logic controller for real-time control. ISA Transactions 45(4), 503–516 (2006)CrossRefGoogle Scholar
  18. 18.
    Kumbasar, T., Eksin, I., Guzelkaya, M., Yesil, E.: Type-2 fuzzy model based controller design for neutralization processes. ISA Transactions 51(2), 277–287 (2012)CrossRefGoogle Scholar
  19. 19.
    Kumbasar, H.: Hagras: Big Bang–Big Crunch optimization based interval type-2 fuzzy PID cascade controller design strategy. Inform. Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.06.005
  20. 20.
    Kumbasar, T.: A simple design method for interval type-2 fuzzy PID controllers. Soft Computing, 1–12 (2013)Google Scholar
  21. 21.
    Yesil, E.: Interval type-2 fuzzy PID load frequency controller using Big Bang-Big Crunch optimization. Applied Soft Computing 15, 100–112 (2014)CrossRefGoogle Scholar
  22. 22.
    Astrom, K.J., Hagglund, T.: Advanced PID Control. ISA (2005)Google Scholar
  23. 23.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems 8(5), 535–550 (2000)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Engin Yesil
    • 1
  • Tufan Kumbasar
    • 1
  • M. Furkan Dodurka
    • 1
  • Ahmet Sakalli
    • 1
  1. 1.Faculty of Electrical and Electronics Engineering, Control and Automation Engineering DepartmentIstanbul Technical UniversityMaslakTurkey

Personalised recommendations