Inverse Reliability Task: Artificial Neural Networks and Reliability-Based Optimization Approaches

  • David Lehký
  • Ondřej Slowik
  • Drahomír Novák
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 436)


The paper presents two alternative approaches to solve inverse reliability task – to determine the design parameters to achieve desired target reliabilities. The first approach is based on utilization of artificial neural networks and small-sample simulation Latin hypercube sampling. The second approach considers inverse reliability task as reliability-based optimization task using double-loop method and also small-sample simulation. Efficiency of both approaches is presented in numerical example, advantages and disadvantages are discussed.


Inverse reliability artificial neural network reliability-based optimization double-loop optimization uncertainties Latin hypercube sampling 


  1. 1.
    Winterstein, S.R., Ude, T.C., Cornell, C.A.: Environ-mental Parameters for Extreme Response: Inverse Form with Omission Factors. In: Schueller, Shinozuka, Yao (eds.) Proceedings of ICOSSAR 1993: Structural Safety and Reliability, Innsbruck, Austria, pp. 551–557. Balkema, Rotterdam (1994)Google Scholar
  2. 2.
    Maes, M.A., Huyse, L.: Developing Structural Design Criteria with Specifies Response Reliability. Canadian Journal of Civil Engineering 24(2), 201–210 (1997)CrossRefGoogle Scholar
  3. 3.
    Der Kiureghian, A., Zhang, Y., Li, C.C.: Inverse Reliability Problem. Journal of Engineering mechanics 120(5), 1154–1159 (1994)CrossRefGoogle Scholar
  4. 4.
    Li, H., Foschi, R.O.: An Inverse Reliability Method and its Application. Structural Safety 20, 257–270 (1998)CrossRefGoogle Scholar
  5. 5.
    Sadovský, Z.: Discussion on: An Inverse Reliability Method and its Application. Structural Safety 22(1), 97–102 (2000)CrossRefGoogle Scholar
  6. 6.
    Mínguez, R., Castillo, E., Hadi, A.S.: Solving the Inverse Reliability Problem Using Decomposition Techniques. Structural Safety 27, 1–23 (2005)CrossRefGoogle Scholar
  7. 7.
    Shayanfar, M.A., Massah, S.R., Rahami, H.: An Inverse Reliability Method Using Networks and Genetic Algorithms. World Applied Sciences Journal 2(6), 594–601 (2007)Google Scholar
  8. 8.
    Cheng, J., Li, Q.S.: Application of the Response Surface Methods to Solve Inverse Reliability Problems with Implicit Response functions. Computational Mechanics 43(4), 451–459 (2009)CrossRefGoogle Scholar
  9. 9.
    António, C., Hoffbauer, L.: Uncertainty Propagation in Inverse Reliability-based Design of Composite Structures. International Journal of Mechanics and Materials in Design 6(1), 89–102 (2010)CrossRefGoogle Scholar
  10. 10.
    Novák, D., Lehký, D.: ANN Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. J. of Eng. Application of Artificial Intelligence 19, 731–740 (2006)CrossRefGoogle Scholar
  11. 11.
    Lehký, D., Novák, D.: Solving Inverse Structural Reliability Problem Using Artificial Neural Networks and Small-Sample Simulation. Advances in Structural Engineering 15(11), 1911–1920 (2012)CrossRefGoogle Scholar
  12. 12.
    Tsompanakis, Y., Lagaros, N., Papadrakis, M. (eds.): Structural Design Optimization Considering Uncertainties. Taylor & Francis (2008)Google Scholar
  13. 13.
    Dubourg, V., Noirfalise, C., Bourinet, J.-M.: Reliability-Based Design Optimization: An Application to the Buckling of Imperfect Shells. In: 4th ASRANet Colloquium, Athens, Greece (2008)Google Scholar
  14. 14.
    Dubourg, V., Bourinet, J.-M., Sudret, B.: A Hierarchical Surrogate-based Strategy for Reliability-based Design Optimization. In: Straub, D., Esteva, L., Faber, M. (eds.) Proc. 15th IFIP WG7.5 Conference on Reliability and Optimization of Structural Systems, Munich, Germany, pp. 53–60. Taylor & Francis (2010)Google Scholar
  15. 15.
    Slowik, O.: Reliability-based Structural Optimization. Master’s thesis. Brno University of Technology. Supervisor: prof. Ing. Drahomír Novák, DrSc, Brno, Czech Republic (2014)Google Scholar
  16. 16.
    Slowik, O., Novák, D.: Algorithmization of Reliability-based Optimization. Transactions of the VŠB - Technical University of Ostrava. Civil Engineering Series (2014) ISSN: 1804-4824Google Scholar
  17. 17.
    JCSS.: JCSS Probabilistic Model Code, Joint Committee on Structural Safety, Technical University of Denmark, Kongens Lyngby, Denmark (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • David Lehký
    • 1
  • Ondřej Slowik
    • 1
  • Drahomír Novák
    • 1
  1. 1.Brno University of TechnologyBrnoCzech Republic

Personalised recommendations