Multilevel Analysis of Collaborative Activities Based on a Mobile Learning Scenario for Real Classrooms

  • Irene-Angelica Chounta
  • Adam Giemza
  • Heinz Ulrich Hoppe
Part of the Communications in Computer and Information Science book series (CCIS, volume 460)

Abstract

This paper describes the analysis of collaborative mobile learning activities. We explore the use of learning analytics for the evaluation of the performance of students as individuals and the performance of teams. We argue that traditional metrics used for learning analytics can provide insight with respect to the quality of the activity and the learning outcome. We propose a way to integrate innovative mobile learning scenarios into traditional classrooms and to analyze collaborative learning activities on both the group and the individual level.

Keywords

learning analytics group activity mobile learning collaboration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zurita, G., Baloian, N., Baytelman, F.: Using mobile devices to foster social interactions in the classroom. In: 12th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2008, pp. 1041–1046. IEEE (2008)Google Scholar
  2. 2.
    Bollen, L., Giemza, A., Hoppe, H.U.: Flexible analysis of user actions in heterogeneous distributed learning environments. In: Dillenbourg, P., Specht, M. (eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 62–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Ogata, H., Hui, G.L., Yin, C., Ueda, T., Oishi, Y., Yano, Y.: LOCH: supporting mobile language learning outside classrooms. International Journal of Mobile Learning and Organisation (IJMLO) 2(3), 271–282 (2008)CrossRefGoogle Scholar
  4. 4.
    Spikol, D., Milrad, M., Maldonado, H., Pea, R.: Integrating co-design practices into the development of mobile science collaboratories. In: Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies (ICALT), Riga, Latvia, pp. 393–397 (2009)Google Scholar
  5. 5.
    Giemza, A., Bollen, L., Hoppe, H.U.: LEMONADE: A flexible authoring tool with support for integrated mobile learning scenarios. International Journal of Mobile Learning and Organisation (IJMLO) 5(1), 96–114 (2010)CrossRefGoogle Scholar
  6. 6.
    Verheyen, P., Ziebarth, S., Novak, J., Hoppe, H.U.: Mobile Werkzeuge zur Erstellung multimedialer Notizen als Basis für medizinische Fallbeispiele. In: Proceedings der Pre-Conference Workshops der 11. e-Learning Fachtagung Informatik-DeLFI 2013. Logos Verlag (2013)Google Scholar
  7. 7.
    Schmitz, B., Ternier, S., Kalz, M., Klemke, R., Specht, M.: Designing a mobile learning game to investigate the impact of role-playing on helping behaviour. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 357–370. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Stenros, J., Waern, A., Montola, M.: Studying the Elusive Experience in Pervasive Games. Simulation & Gaming (2011)Google Scholar
  9. 9.
    Reid, J., Hull, R., Clayton, B., Melamed, T., Stenton, P.: A research methodology for evaluating location aware experiences. Personal Ubiquitous Comput. 15, 53–60 (2011)CrossRefGoogle Scholar
  10. 10.
    Aljohani, N.R., Davis, H.C.: Significance of learning analytics in enhancing the mobile and pervasive learning environments. In: 6th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST 2012), pp. 70–74. IEEE (2012)Google Scholar
  11. 11.
    Balacheff, N., Lund, K.: Multidisciplinarity vs. Multivocality, the case of learning analytics. In: Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp. 5–13. ACM (2013)Google Scholar
  12. 12.
    Harasim, L.: Collaborating in cyberspace: Using computer conferences as a group learning environment. Interactive Learning Environments 3, 119–130 (1993)CrossRefGoogle Scholar
  13. 13.
    Benbunan-Fich, R., Hiltz, S.R.: Impacts of asynchronous learning networks on individual and group problem solving: A field experiment. Group Decision and Negotiation 8, 409–426 (1999)CrossRefGoogle Scholar
  14. 14.
    Kahrimanis, G., Chounta, I.A., Avouris, N.: Study of correlations between logfile-based metrics of interaction and the quality of synchronous collaboration. In: 9th International Conference on the Design of Cooperative Systems, Workshop on Analysing the Quality of collaboration, International Reports on Socio-Informatics (IRSI), Aix en Provence, p. 24 (2010)Google Scholar
  15. 15.
    Marshall, P., Hornecker, E., Morris, R., Dalton, S., Rogers, Y.: When the fingers do the talking: A study of group participation for different kinds of shareable surfaces (2008)Google Scholar
  16. 16.
    Hoppe, H.U., Engler, J., Weinbrenner, S.: The Impact of Structural Characteristics of Concept Maps on Automatic Quality Measurement. In: International Conference of the Learning Sciences (ICLS 2012), Sydney, Australia (2012)Google Scholar
  17. 17.
    Schümmer, T., Strijbos, J.W., Berkel, T.: A new direction for log file analysis in CSCL: Experiences with a spatio-temporal metric. In: 2005 Conference on Computer Supported Collaborative Learning (CSCL 2005), pp. 567–576. International Society of the Learning Sciences (2005)Google Scholar
  18. 18.
    Suthers, D.D., Dwyer, N., Medina, R., Vatrapu, R.: A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning 5, 5–42 (2010)CrossRefGoogle Scholar
  19. 19.
    Persico, D., Pozzi, F.: Task, Teams and Time: three Ts to structure CSCL processes. In: Techniques for Fostering Collaboration in Online Learning Communities: Theoretical and Practical Perspectives, pp. 1–14 (2011)Google Scholar
  20. 20.
    Bratitsis, T., Dimitracopoulou, A., Martínez-Monés, A., Marcos, J.A., Dimitriadis, Y.: Supporting members of a learning community using Interaction Analysis tools: The example of the Kaleidoscope NoE scientific network. In: Eighth IEEE International Conference on Advanced Learning Technologies, ICALT 2008, pp. 809–813. IEEE (2008)Google Scholar
  21. 21.
    Sintoris, C., Stoica, A., Papadimitriou, I., Yiannoutsou, N., Komis, V., Avouris, N.: MuseumScrabble: Design of a mobile game for children’s interaction with a digitally augmented cultural space. International Journal of Mobile Human Computer Interaction (IJMHCI) 2, 53–71 (2010)CrossRefGoogle Scholar
  22. 22.
    Chounta, I.-A., Sintoris, C., Masoura, M., Yiannoutsou, N., Avouris, N.: The good, the bad and the neutral: an analysis of team-gaming activity. In: ECTEL Meets ECSCW 2013: Workshop on Collaborative Technologies for Working and Learning, Cyprus (2013)Google Scholar
  23. 23.
    Ogata, H., Matsuka, Y., El-Bishouty, M.M., Yano, Y.: LORAMS: linking physical objects and videos for capturing and sharing learning experiences towards ubiquitous learning. International Journal of Mobile Learning and Organisation 3(4), 337–350 (2009)CrossRefGoogle Scholar
  24. 24.
    Hsu, C.-K., Hwang, G.-J.: A context-aware ubiquitous learning approach for providing instant learning support in personal computer assembly activities. Interactive Learning Environments (2012)Google Scholar
  25. 25.
    Kuenzi, J.J.: Science, technology, engineering, and mathematics (stem) education: Background, federal policy, and legislative action (2008)Google Scholar
  26. 26.
    Giemza, A., Malzahn, N., Hoppe, H.U.: Mobilogue: Creating and conducting mobile learning scenarios in informal settings. In: 21st International Conference on Computers in Education (2013)Google Scholar
  27. 27.
    Gassner, K.: Diskussionen als Szenario zur Ko-Konstruktion von Wissen mit visuellen Sprachen. Universität Duisburg-Essen (2003)Google Scholar
  28. 28.
    Reimann, P.: Time is precious: Variable-and event-centred approaches to process analysis in CSCL research. International Journal of Computer-Supported Collaborative Learning 4, 239–257 (2009)CrossRefGoogle Scholar
  29. 29.
    Lou, Y., Abrami, P.C., d’Apollonia, S.: Small group and individual learning with technology: A meta-analysis. Review of Educational Research 71, 449–521 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Irene-Angelica Chounta
    • 1
  • Adam Giemza
    • 2
  • Heinz Ulrich Hoppe
    • 2
  1. 1.HCI GroupUniversity of PatrasGreece
  2. 2.CollideUniversity of Duisburg-EssenGermany

Personalised recommendations