Simulations of Galactic Dynamos

  • Axel BrandenburgEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 407)


We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.


Magnetic Helicity Toroidal Magnetic Field Electroweak Phase Transition Current Helicity Galactic Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am indebted to Oliver Gressel and Kandaswamy Subramanian for reading the manuscript and providing help and useful comments. Financial support from the European Research Council under the AstroDyn Research Project 227952, the Swedish Research Council under the grants 621-2011-5076 and 2012-5797, as well as the Research Council of Norway under the FRINATEK grant 231444 are gratefully acknowledged.


  1. Arshakian, T.G., Beck, R.: Optimum frequency band for radio polarization observations. Monthly Notices Roy. Astron. Soc. 418, 2336–2342 (2011)ADSGoogle Scholar
  2. Banerjee, R., Jedamzik, K.: Evolution of cosmic magnetic fields: from the very early Universe, to recombination, to the present. Phys. Rev. D 70, 123003 (2004)ADSGoogle Scholar
  3. Beck, R.: Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 470, 539–556 (2007)ADSGoogle Scholar
  4. Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: Galactic magnetism: recent developments and perspectives. Ann. Rev. Astron. Astrophys. 34, 155–206 (1996)ADSGoogle Scholar
  5. Beck, R., Wielebinski, R.: Magnetic fields in galaxies, In: Oswalt, T.D., Gilmore, G. (eds.) Planets, Stars and Stellar Systems, vol. 5, pp. 641–723. Springer Science+Business Media, Dordrecht (2013)Google Scholar
  6. Bhat, P., Blackman, E.G., Subramanian, K.: Resilience of helical fields to turbulent diffusion II: direct numerical simulations. Monthly Notices Roy. Astron. Soc. 438, 2954–2966 (2014)ADSGoogle Scholar
  7. Biskamp, D., Müller, W.-C.: Decay laws for three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 83, 2195–2198 (1999)ADSGoogle Scholar
  8. Blackman, E.G., Brandenburg, A.: Dynamic nonlinearity in large scale dynamos with shear. Astrophys. J. 579, 359–373 (2002)ADSGoogle Scholar
  9. Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534, 984–988 (2000)ADSGoogle Scholar
  10. Blackman, E.G., Subramanian, K.: On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications. Monthly Notices Roy. Astron. Soc. 429, 1398–1406 (2013)ADSGoogle Scholar
  11. Brandenburg, A.: Disc turbulence and viscosity. In: Abramowicz, M.A., Björnsson, G., Pringle, J.E. (eds.) Theory of Black Hole Accretion Discs, pp. 61–86. Cambridge University Press, Cambridge (1998)Google Scholar
  12. Brandenburg, A.: Chandrasekhar-Kendall functions in astrophysical dynamos. Pramana J. Phys. 77, 67–76 (2011)ADSGoogle Scholar
  13. Brandenburg, A., Dobler, W., Subramanian, K.: Magnetic helicity in stellar dynamos: new numerical experiments. Astron. Nachr. 323, 99–122 (2002)ADSzbMATHGoogle Scholar
  14. Brandenburg, A., Enqvist, K., Olesen, P.: Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 54, 1291–1300 (1996)ADSGoogle Scholar
  15. Brandenburg, A., Käpylä, P.J., Mohammed, A.: Non-Fickian diffusion and tau-approximation from numerical turbulence. Phys. Fluids 16, 1020–1027 (2004)ADSGoogle Scholar
  16. Brandenburg, A., Nordlund, A.A.: Astrophysical turbulence modeling. Rep. Prog. Phys. 74, 046901 (2011)ADSGoogle Scholar
  17. Brandenburg, A., Rädler, K.-H., Rheinhardt, M., Subramanian, K.: Magnetic quenching of alpha and diffusivity tensors in helical turbulence. Astrophys. J. Lett. 687, L49–L52 (2008a)ADSGoogle Scholar
  18. Brandenburg, A., Rädler, K.-H., Schrinner, M.: Scale dependence of alpha effect and turbulent diffusivity. Astron. Astrophys. 482, 739–746 (2008b)ADSzbMATHGoogle Scholar
  19. Brandenburg, A., Sandin, C.: Catastrophic alpha quenching alleviated by helicity flux and shear. Astron. Astrophys. 427, 13–21 (2004)ADSGoogle Scholar
  20. Brandenburg, A., Stepanov, R.: Faraday signature of magnetic helicity from reduced depolarization. Astrophys. J. 786, 91 (2014)ADSGoogle Scholar
  21. Brandenburg, A., Subramanian, K., Balogh, A., Goldstein, M.L.: Scale-dependence of magnetic helicity in the solar wind. Astrophys. J. 734, 9 (2011)ADSGoogle Scholar
  22. Brandenburg, A., Tuominen, I., Rädler, K.-H.: On the generation of non-axisymmetric magnetic fields in mean-field dynamos. Geophys. Astrophys. Fluid Dyn. 49, 45–55 (1989)ADSzbMATHGoogle Scholar
  23. Brentjens, M.A., de Bruyn, A.G.: Faraday rotation measure synthesis. Astron. Astrophys. 441, 1217–1228 (2005)ADSGoogle Scholar
  24. Burn, B.J.: On the depolarization of discrete radio sources by Faraday dispersion. Monthly Notices Roy. Astron. Soc. 133, 67–83 (1966)ADSGoogle Scholar
  25. Candelaresi, S., Brandenburg, A.: How much helicity is needed to drive large-scale dynamos? Phys. Rev. E 87, 043104 (2013)ADSGoogle Scholar
  26. Cattaneo, F., Vainshtein, S.I.: Suppression of turbulent transport by a weak magnetic field. Astrophys. J. Lett. 376, L21–L24 (1991)ADSGoogle Scholar
  27. Chamandy, L., Subramanian, K., Shukurov, A.: Galactic spiral patterns and dynamo action— I. A new twist on magnetic arms. Monthly Notices Roy. Astron. Soc. 428, 3569–3589 (2013)ADSGoogle Scholar
  28. Chamandy, L., Subramanian, K., Quillen, A.: Magnetic arms generated by multiple interfering galactic spiral patterns. Monthly Notices Roy. Astron. Soc. 437, 562–574 (2014)ADSGoogle Scholar
  29. Christensson, M., Hindmarsh, M., Brandenburg, A.: Inverse cascade in decaying 3D magnetohydrodynamic turbulence. Phys. Rev. E 64, 056405-6 (2001)ADSGoogle Scholar
  30. Del Sordo, F., Brandenburg, A.: Vorticity production through rotation, shear, and baroclinicity. Astron. Astrophys. 528, A145 (2011)Google Scholar
  31. Del Sordo, F., Guerrero, G., Brandenburg, A.: Turbulent dynamo with advective magnetic helicity flux. Monthly Notices Roy. Astron. Soc. 429, 1686–1694 (2013)ADSGoogle Scholar
  32. Donner, K.J., Brandenburg, A.: Generation and interpretation of galactic magnetic fields. Astron. Astrophys. 240, 289–298 (1990)ADSzbMATHGoogle Scholar
  33. Durrer, R., Neronov, A.: Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)ADSGoogle Scholar
  34. Ferrière, K.: Effect of an ensemble of explosions on the galactic dynamo. I. General formulation. Astrophys. J. 389, 286–296 (1992)ADSGoogle Scholar
  35. Ferrière, K.: The full alpha-tensor due to supernova explosions and superbubbles in the galactic disk. Astrophys. J. 404, 162–184 (1993)ADSGoogle Scholar
  36. Frick, P., Sokoloff, D., Stepanov, R., Beck, R.: Faraday rotation measure synthesis for magnetic fields of galaxies. Monthly Notices Roy. Astron. Soc. 414, 2540–2549 (2011)ADSGoogle Scholar
  37. Gent, F.A., Shukurov, A., Fletcher, A., Sarson, G.R., Mantere, M.J.: The supernova-regulated ISM—I. The multiphase structure. Monthly Notices Roy. Astron. Soc. 432, 1396–1423 (2013a)ADSGoogle Scholar
  38. Gent, F.A., Shukurov, A., Sarson, G.R., Fletcher, A., Mantere, M.J.: The supernova-regulated ISM—II. The mean magnetic field. Monthly Notices Roy. Astron. Soc. 430, L40–L44 (2013b)ADSGoogle Scholar
  39. Gießübel, R., Heald, G., Beck, R., Arshakian, T.G.: Polarized synchrotron radiation from the Andromeda galaxy M 31 and background sources at 350 MHz. Astron. Astrophys. 559, A27 (2013)ADSGoogle Scholar
  40. Gissinger, C., Fromang, S., Dormy, E.: Direct numerical simulations of the galactic dynamo in the kinematic growing phase. Monthly Notices Roy. Astron. Soc. 394, L84–L88 (2009)ADSGoogle Scholar
  41. Gressel, O., Elstner, D., Ziegler, U., Rüdiger, G.: Direct simulations of a supernova-driven galactic dynamo. Astron. Astrophys. 486, L35–L38 (2008a)ADSGoogle Scholar
  42. Gressel, O., Ziegler, U., Elstner, D., Rüdiger, G.: Dynamo coefficients from local simulations of the turbulent ISM. Astron. Nachr. 329, 619–624 (2008b)ADSzbMATHGoogle Scholar
  43. Gressel, O., Elstner, D., Ziegler, U.: Towards a hybrid dynamo model for the Milky Way. Astron. Astrophys. 560, A93 (2013)ADSGoogle Scholar
  44. Gruzinov, A.V., Diamond, P.H.: Self-consistent theory of mean-field electrodynamics. Phys. Rev. Lett. 72, 1651–1653 (1994)ADSGoogle Scholar
  45. Hanasz, M., Kowal, G., Otmianowska-Mazur, K., Lesch, H.: Amplification of galactic magnetic fields by the cosmic-ray-driven dynamo. Astrophys. J. 605, L33–L36 (2004)ADSGoogle Scholar
  46. Hanasz, M., Otmianowska-Mazur, K., Kowal, G., Lesch, H.: Cosmic-ray-driven dynamo in galactic disks. A parameter study. Astron. Astrophys. 498, 335–346 (2009)ADSGoogle Scholar
  47. Heald, G., Braun, R., Edmonds, R.: The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 503, 409–435 (2009)Google Scholar
  48. Hubbard, A., Brandenburg, A.: Memory effects in turbulent transport. Astrophys. J. 706, 712–726 (2009)ADSGoogle Scholar
  49. Hubbard, A., Brandenburg, A.: Magnetic helicity fluxes in an α 2 dynamo embedded in a halo. Geophys. Astrophys. Fluid Dyn. 104, 577–590 (2010)ADSMathSciNetGoogle Scholar
  50. Hubbard, A., Brandenburg, A.: Catastrophic quenching in α Ω dynamos revisited. Astrophys. J. 748, 51 (2012)ADSGoogle Scholar
  51. Jansson, R., Farrar, G.R.: A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012)ADSGoogle Scholar
  52. Kahniashvili, T., Tevzadze, A.G., Brandenburg, A., Neronov, A.: Evolution of primordial magnetic fields from phase transitions. Phys. Rev. D 87, 083007 (2013)ADSGoogle Scholar
  53. Kemel, K., Brandenburg, A., Ji, H.: A model of driven and decaying magnetic turbulence in a cylinder. Phys. Rev. E 84, 056407 (2011)ADSGoogle Scholar
  54. Kleeorin, N.I., Ruzmaikin, A.A.: Dynamics of the average turbulent helicity in a magnetic field. Magnetohydrodynamics 18, 116–122 (1982). Translation from Magnitnaya Gidrodinamika 2, 17–24 (1982)Google Scholar
  55. Knobloch, E.: Turbulent diffusion of magnetic fields. Astrophys. J. 225, 1050–1057 (1978)ADSGoogle Scholar
  56. Korpi, M.J., Brandenburg, A., Shukurov, A., Tuominen, I., Nordlund, A.A.: A supernova regulated interstellar medium: simulations of the turbulent multiphase medium. Astrophys. J. Lett. 514, L99–L102 (1999)ADSGoogle Scholar
  57. Korpi, M.J., Brandenburg, A., Tuominen, I.: Driving interstellar turbulence by supernova explosions. Studia Geophys. et Geod. 42, 410–418 (1998)Google Scholar
  58. Krause, M., Beck, R., Hummel, E.: The magnetic field structures in two nearby spiral galaxies. II. The bisymmetric spiral field in M81. Astron. Astrophys. 217, 17–30 (1989)Google Scholar
  59. Krause, F., Rädler, K.-H.: Mean-field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford (1980)zbMATHGoogle Scholar
  60. Kulpa-Dybeł, K., Otmianowska-Mazur, K., Kulesza-Żydzik, B., Hanasz, M., Kowal, G., Wóltański, D., Kowalik, K.: Global simulations of the magnetic field evolution in barred galaxies under the influence of the cosmic-ray-driven dynamo. Astrophys. J. Lett. 733, L18 (2011)ADSGoogle Scholar
  61. Layzer, D., Rosner, R., Doyle, H.T.: On the origin of solar magnetic fields. Astrophys. J. 229, 1126–1137 (1979)ADSGoogle Scholar
  62. Mestel, L., Subramanian, K.: Galactic dynamos and density wave theory. Monthly Notices Roy. Astron. Soc. 248, 677–687 (1991)ADSzbMATHMathSciNetGoogle Scholar
  63. Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., Brandenburg, A.: Equatorial magnetic helicity flux in simulations with different gauges. Astron. Nachr. 331, 130–135 (2010)ADSzbMATHGoogle Scholar
  64. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)Google Scholar
  65. Moss, D.: Modelling magnetic fields in spiral galaxies. Astron. Geophys. 53, 23–28 (2012)ADSGoogle Scholar
  66. Moss, D., Brandenburg, A., Tuominen, I.: Properties of mean field dynamos with nonaxisymmetric α-effect. Astron. Astrophys. 247, 576–579 (1991)ADSzbMATHGoogle Scholar
  67. Moss, D., Brandenburg, A., Donner, K.J., Thomasson, M.: Models for the magnetic field of M81. Astrophys. J. 409, 179–189 (1993)ADSGoogle Scholar
  68. Moss, D., Beck, R., Sokoloff, D., Stepanov, R., Krause, M., Arshakian, T.G.: The relation between magnetic and material arms in models for spiral galaxies. Astron. Astrophys. 556, A147 (2013)ADSGoogle Scholar
  69. Neronov, A., Vovk, I.: Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–192 (2010)ADSGoogle Scholar
  70. Parker, E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)ADSMathSciNetGoogle Scholar
  71. Parker, E.N.: The generation of magnetic fields in astrophysical bodies. II. The galactic field. Astrophys. J. 163, 255–278 (1971)ADSGoogle Scholar
  72. Parker, E.N.: Fast dynamos, cosmic rays, and the galactic magnetic field. Astrophys. J. 401, 137–145 (1992)ADSGoogle Scholar
  73. Piddington, J.H.: Turbulent diffusion of magnetic fields in astrophysical plasmas. Astrophys. J. 247, 293–299 (1981)ADSGoogle Scholar
  74. Pouquet, A., Frisch, U., Léorat, J.: Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976)ADSzbMATHGoogle Scholar
  75. Rädler, K.-H.: Mean field approach to spherical dynamo models. Astron. Astrophys. 301, 101–129 (1980)Google Scholar
  76. Rädler, K.-H.: Investigations of spherical kinematic mean-field dynamo models. Astron. Nachr. 307, 89–113 (1986a)ADSzbMATHGoogle Scholar
  77. Rädler, K.-H.: On the effect of differential rotation on axisymmetric and non-axisymmetric magnetic fields of cosmical bodies. Plasma Phys. ESA SP-251, 569–574 (1986b)Google Scholar
  78. Rees, M.J.: The origin and cosmogonic implications of seed magnetic fields. Quart. J. Roy. Astron. Soc. 28, 197–206 (1987)ADSGoogle Scholar
  79. Rheinhardt, M., Brandenburg, A.: Test-field method for mean-field coefficients with MHD background. Astron. Astrophys. 520, A28 (2010)ADSGoogle Scholar
  80. Rheinhardt, M., Brandenburg, A.: Modeling spatio-temporal nonlocality in mean-field dynamos. Astron. Nachr. 333, 71–77 (2012)ADSGoogle Scholar
  81. Ruzmaikin, A.A., Sokolov, D.D., Shukurov, A.M.: Magnetic field distribution in spiral galaxies. Astron. Astrophys. 148, 335–343 (1985)ADSGoogle Scholar
  82. Ruzmaikin, A.A., Sokoloff, D.D., Shukurov, A.M.: Magnetic Fields of Galaxies. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  83. Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U.: Mean-field view on rotating magnetoconvection and a geodynamo model. Astron. Nachr. 326, 245–249 (2005)ADSGoogle Scholar
  84. Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., Christensen, U.R.: Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dyn. 101, 81–116 (2007)ADSMathSciNetGoogle Scholar
  85. Shukurov, A.: Mesoscale magnetic structures in spiral galaxies. In: Wielebinski, R., Beck, R. (eds.) Cosmic Magnetic Fields. Lect. Notes Phys., vol. 664, pp. 113–135. Springer, Berlin (2005)Google Scholar
  86. Shukurov, A., Sokoloff, D., Subramanian, K., Brandenburg, A.: Galactic dynamo and helicity losses through fountain flow. Astron. Astrophys. 448, L33–L36 (2006)ADSGoogle Scholar
  87. Snodin, A.P., Brandenburg, A., Mee, A.J., Shukurov, A.: Simulating field-aligned diffusion of a cosmic ray gas. Monthly Notices Roy. Astron. Soc. 373, 643–652 (2006)ADSGoogle Scholar
  88. Sofue, Y., Fujimoto, M., Wielebinski, R.: Global structure of magnetic fields in spiral galaxies. Ann. Rev. Astron. Astrophys. 24, 459–497 (1986)ADSGoogle Scholar
  89. Sokoloff, D.D., Bykov, A.A., Shukurov, A., Berkhuijsen, E.M., Beck, R., Poezd, A.D.: Depolarization and Faraday effects in galaxies. Monthly Notices Roy. Astron. Soc. 299, 189–206 (1998)ADSGoogle Scholar
  90. Steenbeck, M., Krause, F.: Zur Dynamotheorie stellarer und planetarer Magnetfelder I. Berechnung sonnenähnlicher Wechselfeldgeneratoren. Astron. Nachr. 291, 49–84 (1969a)zbMATHGoogle Scholar
  91. Steenbeck, M., Krause, F.: Zur Dynamotheorie stellarer und planetarer Magnetfelder II. Berechnung planetenähnlicher Gleichfeldgeneratoren. Astron. Nachr. 291, 271–286 (1969b)zbMATHGoogle Scholar
  92. Steenbeck, M., Krause, F., Rädler, K.-H.: Berechnung der mittleren Lorentz-Feldstärke \(\overline{\boldsymbol{v} \times \boldsymbol{ B}}\) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung. Z. Naturforsch. 21a, 369–376 (1966). See also the translation in Roberts & Stix, The turbulent dynamo, Tech. Note 60, NCAR, Boulder, Colorado (1971)Google Scholar
  93. Subramanian, K., Brandenburg, A.: Nonlinear current helicity fluxes in turbulent dynamos and alpha quenching. Phys. Rev. Lett. 93, 205001 (2004)ADSGoogle Scholar
  94. Subramanian, K., Brandenburg, A.: Magnetic helicity density and its flux in weakly inhomogeneous turbulence. Astrophys. J. 648, L71–L74 (2006)ADSGoogle Scholar
  95. Subramanian, K., Mestel, L.: Galactic dynamos and density wave theory—II. An alternative treatment for strong non-axisymmetry. Monthly Notices Roy. Astron. Soc. 265, 649–654 (1993)Google Scholar
  96. Sur, S., Shukurov, A., Subramanian, K.: Galactic dynamos supported by magnetic helicity fluxes. Monthly Notices Roy. Astron. Soc. 377, 874–882 (2007)ADSGoogle Scholar
  97. Tevzadze, A.G., Kisslinger, L., Brandenburg, A., Kahniashvili, T.: Magnetic fields from QCD phase transitions. Astrophys. J. 759, 54 (2012)ADSGoogle Scholar
  98. Thomasson, M., Donner, K.J.: A model of the tidal interaction between M81 and NGC3077. Astron. Astrophys. 272, 153–160 (1993)ADSGoogle Scholar
  99. Turner, M.S., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743–2754 (1988)ADSGoogle Scholar
  100. Vachaspati, T.: Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258–261 (1991)ADSGoogle Scholar
  101. Vachaspati, T.: Estimate of the primordial magnetic field helicity. Phys. Rev. Lett. 87, 251302 (2001)ADSGoogle Scholar
  102. Vainshtein, S.I., Cattaneo, F.: Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992)ADSGoogle Scholar
  103. Vainshtein, S.I., Ruzmaikin, A.A.: Generation of the large-scale Galactic magnetic field. Sov. Astron. 16, 365–367 (1971)ADSGoogle Scholar
  104. Vishniac, E.T., Cho, J., Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 550, 752–760 (2001)ADSGoogle Scholar
  105. Warnecke, J., Brandenburg, A., Mitra, D.: Magnetic twist: a source and property of space weather. J. Spa. Weather Spa. Clim. 2, A11 (2012)ADSGoogle Scholar
  106. Yousef, T.A., Brandenburg, A.: Relaxation of writhe and twist of a bi-helical magnetic field. Astron. Astrophys. 407, 7–12 (2003)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Nordic Institute for Theoretical PhysicsKTH Royal Institute of Technology and Stockholm UniversityStockholmSweden

Personalised recommendations