Advertisement

Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling

  • David Gurevich
  • Ashley Siegel
  • Peter D. CurrieEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 56)

Abstract

Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions.

Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.

Keywords

Satellite Cell Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Congenital Muscular Dystrophy Myogenic Progenitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656PubMedPubMedCentralGoogle Scholar
  2. Adamo CM, Dai DF, Percival JM, Minami E, Willis MS, Patrucco E, Froehner SC, Beavo JA (2010) Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 107:19079–19083PubMedPubMedCentralGoogle Scholar
  3. Alexander MS, Kawahara G, Kho AT, Howell MH, Pusack TJ, Myers JA, Montanaro F, Zon LI, Guyon JR, Kunkel LM (2011) Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors. Muscle Nerve 43(5):741–750PubMedPubMedCentralGoogle Scholar
  4. Allamand V, Sunada Y, Salih MA, Straub V, Ozo CO, Al-Turaiki MH, Akbar M, Kolo T, Colognato H, Zhang X, Sorokin LM, Yurchenco PD, Tryggvason K, Campbell KP (1997) Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. Hum Mol Genet 6(5):747–752PubMedGoogle Scholar
  5. Andermarcher E, Surani MA, Gherardi E (1996) Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev Genet 18:254–266PubMedGoogle Scholar
  6. Anderson JE, Wozniak AC, Mizunoya W (2012) Single muscle-fiber isolation and culture for cellular, molecular, pharmacological, and evolutionary studies. Methods Mol Biol 798:85–102PubMedGoogle Scholar
  7. Arnold HH, Braun T (1996) Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int J Dev Biol 40:345–353PubMedGoogle Scholar
  8. Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20:2450–2464PubMedPubMedCentralGoogle Scholar
  9. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlindeficient muscular dystrophy. Nature 423:168–172PubMedGoogle Scholar
  10. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira ES, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20:37–42PubMedGoogle Scholar
  11. Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130(25):5851–5860PubMedGoogle Scholar
  12. Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avion dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701PubMedGoogle Scholar
  13. Berger J, Berger S, Hall TE, Lieschke GJ, Currie PD (2010) Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul Disord 20:826–32PubMedGoogle Scholar
  14. Berger J, Sztal T, Currie PD (2012) Quantification of birefringence readily measures the level of muscle damage in zebrafish. Biochem Biophys Res Commun 423:785–788PubMedGoogle Scholar
  15. Blagden CS, Currie PD, Ingham PW, Hughes SM (1997) Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 11:2163–2175PubMedPubMedCentralGoogle Scholar
  16. Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113:1255–1265PubMedGoogle Scholar
  17. Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Mol Genet 7:2135–2140Google Scholar
  18. Bone Q (1975) Muscular and energetic aspects of fish swimming. Swimming Flying Nature 2:493–528Google Scholar
  19. Bone Q (1989) Evolutionary patterns of axial muscle systems in some invertebrates and fish. Am Zool 29:5–18Google Scholar
  20. Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42PubMedGoogle Scholar
  21. Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev 12:349–361Google Scholar
  22. Braun T, Bober E, Winter B, Rosenthal N, Arnold HH (1990) Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 9:821–831PubMedPubMedCentralGoogle Scholar
  23. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K (2010) Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A 107(34):15111–15116PubMedPubMedCentralGoogle Scholar
  24. Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9(8):632–646. doi: 10.1038/nrg2369 PubMedGoogle Scholar
  25. Bryson-Richardson RJ, Daggett DF, Cortes F, Neyt C, Keenan DG, Currie PD (2005) Myosin heavy chain expression in zebrafish and slow muscle composition. Dev Dyn 233:1018–1022PubMedGoogle Scholar
  26. Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti B, Chu ML, Pepe G (2001) Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 98(7516–7521)Google Scholar
  27. Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137(2):119–149PubMedGoogle Scholar
  28. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472PubMedPubMedCentralGoogle Scholar
  29. Cinnamon Y, Kahane N, Kalcheim C (1999) Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126:4305–4315PubMedGoogle Scholar
  30. Cornelison DD (2008) Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 105:663–669PubMedPubMedCentralGoogle Scholar
  31. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283PubMedGoogle Scholar
  32. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236PubMedPubMedCentralGoogle Scholar
  33. Cossu G, De Angelis L, Borello U, Beraducci B, Buffa V, Sonnino C, Coletta M, Vivarelli E, Bouche M, Lattanzi L, Tosoni D, Di Donna S, Berghella L, Salvatori G, Murphy P, Cusella-de Angelis MG, Molinaro M (2000) Determination, diversification and multipotency of mammalian myogenic cells. Int J Dev Biol 44:699–706PubMedGoogle Scholar
  34. Coutelle O, Blagden CS, Hampson R, Halai C, Rigby PW, Hughes SM (2001) Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev Biol 236:136–150PubMedGoogle Scholar
  35. Currie PD, Ingham PW (1996) Induction of a specific muscle cell type by a hedgehoglike protein in zebrafish. Nature 382:452–455PubMedGoogle Scholar
  36. Currie PD, Ingham PW (2001) Embryonic skeletal muscle in the zebrafish. Muscle growth and development. Academic, NYGoogle Scholar
  37. d’Albis A, Couteaux R, Janmot C, Roulet A, Mira JC (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174:103–110PubMedGoogle Scholar
  38. Davis TA, Fiorotto ML (2009) Regulation of muscle growth in neonates. Curr Opin Clin Nutr Metab Care 12(1):78–85PubMedPubMedCentralGoogle Scholar
  39. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000PubMedGoogle Scholar
  40. Denetclaw WF, Ordahl CP (2000) The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127:893–905PubMedGoogle Scholar
  41. Deries M, Collins JJ, Duxson MJ (2008) The mammalian myotome: a muscle with no innervation. Evol Dev 10(6):746–755PubMedGoogle Scholar
  42. Deries M, Schweitzer R, Duxson M (2010) Developmental fate of the mammalian myotome. Dev Dyn 239:2898–2910PubMedGoogle Scholar
  43. Devoto SH, Melancon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380PubMedGoogle Scholar
  44. Devoto SH, Stoiber W, Hammond CL, Steinbacher P, Haslett JR, Barresi MJ, Patterson SE, Adiarte EG, Hughes SM (2006) Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish. Evol Dev 8(1):101–110. doi: 10.1111/j.1525-142X.2006.05079.x PubMedPubMedCentralGoogle Scholar
  45. Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of BMP responsiveness. Development 138(1)Google Scholar
  46. Downs KM, Davies T (1993) Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118:1255–1266PubMedGoogle Scholar
  47. Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW (2010) Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 88:E51–60PubMedGoogle Scholar
  48. Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640PubMedGoogle Scholar
  49. Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5:121–123PubMedPubMedCentralGoogle Scholar
  50. Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114:235–244PubMedGoogle Scholar
  51. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strahle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308:133–143PubMedGoogle Scholar
  52. Fairclough RJ, Bareja A, Davies KE (2011) Progress in therapy for Duchenne muscular dystrophy. Exp Physiol 96:1101–1113PubMedGoogle Scholar
  53. Felsenfeld AL, Curry M, Kimmel CB (1991) The fub-1 mutation blocks initial myofibril formation in the zebrafish muscle pioneer cells. Dev Biol 148:23–30PubMedGoogle Scholar
  54. Ferrante MI, Kiff RM, Goulding DA, Stemple DL (2011) Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci 124:565–577PubMedPubMedCentralGoogle Scholar
  55. Figeac N, Daczewska M, Marcelle C, Jagla K (2007) Muscle stem cells and model systems for their investigation. Dev Dyn 236:3332–3342PubMedGoogle Scholar
  56. Frontera WR, Zayas AR, Rodriguez N (2012) Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am 23(1):201–207PubMedPubMedCentralGoogle Scholar
  57. Garry DJ, Yang Q, Bassel-Duby R, Williams RS (1997) Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol 188:280–294PubMedGoogle Scholar
  58. Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Cell 312(1):13–28Google Scholar
  59. Gibbs EM, Horstick EJ, Dowling JJ (2013) Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 280(17):4187–4197PubMedPubMedCentralGoogle Scholar
  60. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271PubMedGoogle Scholar
  61. Goldsmith JR, Jobin C (2012) Think small: Zebrafish as a model systemof human pathology. J Biomed Biotechnol 2012, 817341PubMedPubMedCentralGoogle Scholar
  62. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147PubMedPubMedCentralGoogle Scholar
  63. Granato M, Nüsslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6(4):461–468PubMedGoogle Scholar
  64. Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413PubMedGoogle Scholar
  65. Greer-Walker M, Burd AC, Pull GA (1972) The total number of white skeletal muscl fibres in cross section as a character for stock separation in North sea herring (Clupea harengus). J Cons Int Explor Mer 34:238–243Google Scholar
  66. Gros J, Scaal M, Marcelle C (2004) A two-step mechanism for myotome formation in chick. Dev Cell 6:875–882PubMedGoogle Scholar
  67. Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958PubMedGoogle Scholar
  68. Groves J, Hammond C, Hughes SM (2005) Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 132(19):4211–4222PubMedGoogle Scholar
  69. Guo LT, Zhang XU, Kuang W, Xu H, Liu LA, Vilquin JT, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Wewer UM, Engvall E (2003) Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord 13(3):207–215PubMedGoogle Scholar
  70. Guyon JR, Steffen LS, Howell MH, Pusack TJ, Lawrence C, Kunkel LM (2007) Modeling human muscle disease in zebrafish. Biochim Biophys Acta 1772(2):205–215PubMedGoogle Scholar
  71. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  72. Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 104(17):7092–7097. doi: 10.1073/pnas.0700942104 PubMedPubMedCentralGoogle Scholar
  73. Hamade A, Deries M, Begemann G, Bally-Cuif L, Genet C, Sabatier F, Bonnieu A, Cousin X (2006) Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 289:127–140PubMedGoogle Scholar
  74. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272Google Scholar
  75. Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, Hughes SM (2007) Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 302(2):504–521. doi: 10.1016/j.ydbio.2006.10.009 PubMedPubMedCentralGoogle Scholar
  76. Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364(6437):501–506. doi: 10.1038/364501a0 PubMedGoogle Scholar
  77. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  78. Hawkins TA, Haramis AP, Etard C, Prodromou C, Vaughan CK, Ashworth R, Ray S, Behra M, Holder N, Talbot WS, Pearl LH, Strähle U, Wilson SW (2008) The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135:1147–1156PubMedPubMedCentralGoogle Scholar
  79. Helbling-Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J, Tomé FM, Schwartz K, Fardeau M, Tryggvason K (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11(2):216–218PubMedGoogle Scholar
  80. Helenius IT, Yeh JR (2012) Small zebrafish in a big chemical pond. J Cell Biochem 113(7):2208–2216PubMedPubMedCentralGoogle Scholar
  81. Henry CA, Amacher SL (2004) Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev Cell 7:917–923PubMedGoogle Scholar
  82. Hinits Y, Osborn DPS, Carvajal JJ, Rigby PWJ, Hughes SM (2007) Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expr Patterns 7:738–745PubMedPubMedCentralGoogle Scholar
  83. Hinits Y, Osborn DPS, Hughes SM (2009) Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136:403–414PubMedPubMedCentralGoogle Scholar
  84. Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM (2011) Defective cranial development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 358(1):102–112PubMedPubMedCentralGoogle Scholar
  85. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156PubMedGoogle Scholar
  86. Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY (2007) Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 134:2771–2781PubMedGoogle Scholar
  87. Holley SA (2007) The Genetics and Embryology of Zebrafish Metamerism. Dev Dyn 236:1422–1449PubMedGoogle Scholar
  88. Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, Currie PD (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev Cell 12(2):207–219. doi: 10.1016/j.devcel.2007.01.001 PubMedGoogle Scholar
  89. Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54PubMedGoogle Scholar
  90. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987PubMedGoogle Scholar
  91. Hu P, Geles KG, Paik JH, DePinho RA, Tjian R (2008) Codependent activators direct myoblast specific MyoD transcription. Dev Cell 15:534–546PubMedPubMedCentralGoogle Scholar
  92. Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G (2009) Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for b-catenin. Genes Dev 23:997–1013PubMedPubMedCentralGoogle Scholar
  93. Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136(19):3367–3376PubMedPubMedCentralGoogle Scholar
  94. Jöbsis GJ, Keizers H, Vreijling JP, de Visser M, Speer MC, Wolterman RA, Baas F, Bolhuis PA (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14:113–115PubMedGoogle Scholar
  95. Johnston IA, Cole NJ, Vieira VLA, Davidson I (1997) Temperature and developmental plasticity of muscle phenotype in herring larvae. J Exp Biol 200:849–868PubMedGoogle Scholar
  96. Johnston IA, Lee H-T, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793PubMedGoogle Scholar
  97. Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617–1628PubMedGoogle Scholar
  98. Jostes B, Walther C, Gruss P (1990) The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33:27–37PubMedGoogle Scholar
  99. Kahane N, Cinnamon Y, Kalcheim C (1998) The origin and fate of pioneer myotomal cells in the avian embryo. Mech Dev 74:59–73PubMedGoogle Scholar
  100. Kahane N, Cinnamon Y, Kalcheim C (2002) The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development 129:2675–2687PubMedGoogle Scholar
  101. Kalcheim C, Ben-Yair R (2005) Cell rearrangements during development of the somite and its derivatives. Curr Opin Genet Dev 15:371–380PubMedGoogle Scholar
  102. Kalcheim C, Cinnamon Y, Kahane N (1999) Myotome formation: a multistage process. Cell Tissue Res 296:161–173PubMedGoogle Scholar
  103. Kaplan JC (2011) The 2012 version of the gene table of monogenic neuromuscular disorders. Neuromuscul Disord 21:833–861PubMedGoogle Scholar
  104. Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471PubMedGoogle Scholar
  105. Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM (2011) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 108(13):5331–5336PubMedPubMedCentralGoogle Scholar
  106. Kettleborough RN, Bruijn E, Eeden F, Cuppen E, Stemple DL (2011) High-throughput target-selected gene inactivation in zebrafish. Methods Cell Biol 104:121–127PubMedGoogle Scholar
  107. Kiefer JC, Hauschka SD (2001) Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 232:77–90PubMedGoogle Scholar
  108. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the Zebrafish. Dev Dyn 203:253–310PubMedGoogle Scholar
  109. Kobiyama A, Nihei Y, Hirayama Y, Kikuchi Y, Suetake H, Johnston IA, Watabe S (1998) Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp. J Exp Biol 201:2801–2813Google Scholar
  110. Launay T, Armand AS, Charbonnier F, Mira JC, Donsez E, Gallien CL, Chanoine C (2001) Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem 49(7):887–899PubMedGoogle Scholar
  111. Lepper C, Fan CM (2010) Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48:424–436PubMedPubMedCentralGoogle Scholar
  112. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631PubMedPubMedCentralGoogle Scholar
  113. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646PubMedPubMedCentralGoogle Scholar
  114. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RHJ (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20:31–36PubMedGoogle Scholar
  115. Luther PK, Munro LJ, Squire JM (1995) Muscle ultrastructure in the teleost fish. Micron 26:431–459Google Scholar
  116. Marschallinger J, Obermayer A, Sänger AM, Stoiber W, Steinbacher P (2009) Postembryonic fast muscle growth of teleost fish depends upon a nonuniformly distributed population of mitotically active Pax7+ precursor cells. Dev Dyn 238(9):2442–2448PubMedPubMedCentralGoogle Scholar
  117. Mascarello F, Romanello MG, Scapolo PA (1986) Histochemical and immunohistochemical profile of pink muscle fibres in some teleosts. Histochemistry 84:251–255PubMedGoogle Scholar
  118. Maurya AK, Tan H, Souren M, Wang X, Wittbrodt J, Ingham PW (2011) Integration of Hedgehog and BMP signalling by the engrailed2A gene in the zebrafish myotome. Development 138(4):755–765PubMedGoogle Scholar
  119. McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248(1):125–130PubMedGoogle Scholar
  120. Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381:845–860PubMedGoogle Scholar
  121. Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87:1089–1093PubMedPubMedCentralGoogle Scholar
  122. Morin-Kensicki EM, Eisen JS (1997) Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. Development 124:159–167PubMedGoogle Scholar
  123. Morlet K, Grounds MD, McGeachie JK (1989) Muscle precursor replication after repeated regeneration of skeletal muscle in mice. Anat Embryol (Berl) 180(5):471–478Google Scholar
  124. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435PubMedGoogle Scholar
  125. Murphy M, Kardon G (2011) Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr Top Dev Biol 96:1–32PubMedGoogle Scholar
  126. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637PubMedPubMedCentralGoogle Scholar
  127. Nabeshima Y, Hanaoka K, Hayasaka M, Esuml E, Li S, Nonaka I, Nabeshima Y-I (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535PubMedGoogle Scholar
  128. Nguyen-Chi ME, Bryson-Richardson R, Sonntag C, Hall TE, Gibson A, Sztal T, Chua W, Schilling TF, Currie PD (2012) Morphogenesis and cell fate determination within the adaxial cell equivalence group of the zebrafish myotome. PLoS Genet 8(10):e1003014PubMedPubMedCentralGoogle Scholar
  129. Ontell M, Feng KC, Klueber K, Dunn RF, Taylor F (1984) Myosatellite cells, growth, and regeneration in murine dystrophic muscle: a quantitative study. Anat Rec 208:159–174PubMedGoogle Scholar
  130. Oppenheim RW (1974) The ontogeny of behaviour in the chick embryo. In: Lehrman DS (ed) Advances in the study of behaviour. Academic, New York, pp 133–172Google Scholar
  131. Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111(4):1097–1107PubMedGoogle Scholar
  132. Otten C, Abdelilah-Seyfried S (2013) Laser-inflicted injury of Zebrafish embryonic skeletal muscle. J Vis Exp 71Google Scholar
  133. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE (2009) Normal table of postembryonic Zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 238:2975–3015PubMedPubMedCentralGoogle Scholar
  134. Patterson SE, Mook LB, Devoto SH (2008) Growth in the larval zebrafish pectoral fin and trunk musculature. Dev Dyn 237(2):307–315. doi: 10.1002/dvdy.21400 PubMedGoogle Scholar
  135. Pirskanen A, Kiefer JC, Hauschka SD (2000) IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol 224(2):189–203PubMedGoogle Scholar
  136. Pownall ME, Gustafsson MK, Emerson CPJ (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783PubMedGoogle Scholar
  137. Rahimov F, Kunkel LM (2013) Cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 201(4):499–510PubMedPubMedCentralGoogle Scholar
  138. Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125(13):2349–2358PubMedGoogle Scholar
  139. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953PubMedGoogle Scholar
  140. Rescan C, Gauvry L (1996) Genome of the rainbow trout (Oncorhynchus mykiss) encodes two distinct muscle regulatory factors with homology to MyoD. Comp Biochem Physiol 113B:711–715Google Scholar
  141. Rescan PY, Montfort J, Fautrel A, Rallière C, Lebret V (2013) Gene expression profiling of the hyperplastic growth zones of the late trout embryo myotome using laser capture microdissection and microarray analysis. BMC Genomics 14(173)Google Scholar
  142. Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F (1988) Why animals have different muscle fibre types. Nature 335:824–827PubMedGoogle Scholar
  143. Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22:515–529PubMedGoogle Scholar
  144. Ross JJ, Duxson MJ, Harris AJ (1987) Formation of primary and secondary myotubes in rat lumbrical muscles. Development 100:383–394PubMedGoogle Scholar
  145. Rowlerson A, Radaelli G, Mascarello F, Veggetti A (1997) Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio. Cell Tissue Res 289(2):311–322PubMedGoogle Scholar
  146. Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle development and growth, vol fish physiology series 18. Academic Press, San Diego, pp 103–140Google Scholar
  147. Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17:203–209PubMedGoogle Scholar
  148. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75(7):1351–1359PubMedGoogle Scholar
  149. Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37(4):622–632PubMedGoogle Scholar
  150. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698PubMedPubMedCentralGoogle Scholar
  151. Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–307PubMedGoogle Scholar
  152. Schiaffino S, Reggiani C (2011) Fibre types in mammalian skeletal muscles. Physiol Rev 91:1447–1531PubMedGoogle Scholar
  153. Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103:945–950PubMedPubMedCentralGoogle Scholar
  154. Schnapp E, Pistocchi AS, Karampetsou E, Foglia E, Lamia CL, Cotelli F, Cossu G (2009) Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 doublemorphant zebrafish embryo. J Cell Sci 122:481–488PubMedGoogle Scholar
  155. Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94PubMedGoogle Scholar
  156. Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63–72PubMedGoogle Scholar
  157. Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW (2011) Analysis of Pax7 expressing myogenic cells in Zebrafish muscle development, injury, and models of disease. Dev Dyn 240(11):2440–2451PubMedGoogle Scholar
  158. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DYR (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31:106–110PubMedGoogle Scholar
  159. Seo HC, Saetre BO, Havik B, Ellingsen S, Fjose A (1998) The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech Dev 70:49–63PubMedGoogle Scholar
  160. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20(13):1692–1708. doi: 10.1101/gad.1419406 PubMedGoogle Scholar
  161. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580PubMedGoogle Scholar
  162. Siegel AL, Gurevich DB, Currie PD (2013) A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 280(17):4074–4088PubMedGoogle Scholar
  163. Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 188:181–200PubMedGoogle Scholar
  164. Steinbacher P, Haslett JR, Obermayer A, Marschallinger J, Bauer HC, Sänger AM, Stoiber W (2007) MyoD and Myogenin expression during myogenic phases in brown trout: a precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev Dyn 236(4):1106–1114PubMedGoogle Scholar
  165. Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sanger AM, Stoiber W (2011) Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol 214:1791–1801PubMedPubMedCentralGoogle Scholar
  166. Stellabotte F, Dobbs-McAuliffe B, Fernandez DA, Feng X, Devoto SH (2007) Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 134:1253–1257PubMedGoogle Scholar
  167. Stickland NC (1981) Muscle development in the human fetus as exemplified by m. sartorius: a quantitative study. J Anat 132(4):557–579PubMedPubMedCentralGoogle Scholar
  168. Stickney HL, Barresi MJ, Devoto SH (2000) Somite development in Zebrafish. Dev Dyn 219:287–303PubMedGoogle Scholar
  169. Stoiber W, Sänger AM (1996) An electron microscopic investigation into the possible source of new muscle fibres in teleost fish. Anat Embryol (Berl) 194(6):569–579Google Scholar
  170. Szeto DP, Kimelman D (2006) The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev 20:1923–1932PubMedPubMedCentralGoogle Scholar
  171. Tajbakhsh S, Buckingham ME (2000) The birth of muscle progenitor cells in the mouse: Spatiotemporal considerations. Curr Topic Dev Biol 48:225–268Google Scholar
  172. Telfer WR, Busta AS, Bonnemann CG, Feldman EL, Dowling JJ (2010) Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 19:2433–2444PubMedPubMedCentralGoogle Scholar
  173. Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:98PubMedPubMedCentralGoogle Scholar
  174. Valdez MR, Richardson JA, Klein WH, Olson EN (2000) Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol 219(2):287–298PubMedGoogle Scholar
  175. van Raamsdonk W, Pool CW, te Kronnie G (1978) Differentiation of muscle fibre types in the teleost Brachydanio rerio, the zebrafish. Anat Embryol 153:137–155PubMedGoogle Scholar
  176. van Raamsdonk W, te Kronnie G, Pool CW, van de Laarse W (1980) An immonohistochemical and enzymatic characterization of the muscle fibres in myotomal muscle of the teleost Brachtydanio rerio. Acta Histochem 67:200–216PubMedGoogle Scholar
  177. Venters SJ, Thorsteinsdottir S, Duxson M (1999) Early development of the myotome in the mouse. Dev Dyn 216(3):219–232PubMedGoogle Scholar
  178. Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH (1995) Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128(4):563–576PubMedGoogle Scholar
  179. Voytik SL, Przyborski M, Badylak SF, Konieczny SF (1993) Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn 198:214–224PubMedGoogle Scholar
  180. Wang YH, Li CK, Lee GH, Tsay HJ, Tsai HJ, Chen YH (2008) Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization. Dev Dyn 237:1043–1050PubMedGoogle Scholar
  181. Waterman RE (1969) Development of the lateral musculature in the teleost, Brachydanio rerio: a fine structure study. Am J Anat 125:457–493PubMedGoogle Scholar
  182. Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T, Andermann P, Doerre OG, Grunwald DJ, Riggleman B (1996) Developmental regulation of zebrafish MyoD in wild-type, no-tail and spadetail embryos. Development 122:271–280PubMedGoogle Scholar
  183. White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD (2000) Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem 48:1531–1544PubMedGoogle Scholar
  184. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189PubMedPubMedCentralGoogle Scholar
  185. White RB, Biérinx A-S, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21PubMedPubMedCentralGoogle Scholar
  186. Wolff C, Roy S, Ingham PW (2003) Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 13:1169–1181PubMedGoogle Scholar
  187. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • David Gurevich
    • 1
  • Ashley Siegel
    • 1
  • Peter D. Currie
    • 1
    • 2
    Email author
  1. 1.Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
  2. 2.EMBL Australia, Melbourne NodeMonash UniversityClaytonAustralia

Personalised recommendations