Treewidth Computation and Kernelization in the Parallel External Memory Model

  • Riko Jacob
  • Tobias Lieber
  • Matthias Mnich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8705)


We present a randomized algorithm which computes, for any fixed k, a tree decomposition of width at most k of any input graph. We analyze it in the parallel external memory (PEM) model that measures efficiency by counting the number of cache misses on a multi-CPU private cache shared memory machine. Our algorithm has sorting complexity, which we prove to be optimal for a large parameter range.

  We use this algorithm as part of a PEM-efficient kernelization algorithm. Kernelization is a technique for preprocessing instances of size n of NP-hard problems with a structural parameter κ by compressing them efficiently to a kernel, an equivalent instance of size at most g(κ). An optimal solution to the original instance can then be recovered efficiently from an optimal solution to the kernel. Our main results here is an adaption of the linear-time randomized protrusion replacement algorithm by Fomin et al. (FOCS 2012). In particular, we obtain efficient randomized parallel algorithms to compute linear kernels in the PEM model for all separable contraction-bidimensional problems with finite integer index (FII) on apex minor-free graphs, and for all treewidth-bounding graph problems with FII on topological minor-free graphs.


Vertex Cover Linear Kernel Input Graph Tree Decomposition List Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Maheshwari, A., Zeh, N.: I/O-efficient algorithms for graphs and bounded treewidth. Algorithmica 54(3), 413–469 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Flum, J., Grohe, M.: Parameterized complexity theory. Springer (2006)Google Scholar
  5. 5.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\mathcal{F}\)-deletion: Approximation, kernelization and optimal FPT algorithms. In: Proc. FOCS 2012, pp. 470–479 (2012)Google Scholar
  7. 7.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Drucker, A.: New limits to classical and quantum instance compression. In: Proc. FOCS 2012, pp. 609–618 (2012)Google Scholar
  9. 9.
    Hagerup, T.: Simpler linear-time kernelization for planar dominating set. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 181–193. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    van Bevern, R., Hartung, S., Kammer, F., Niedermeier, R., Weller, M.: Linear-time computation of a linear problem kernel for dominating set on planar graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 194–206. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiprocessors. In: Proc. SPAA 2008, pp. 197–206 (2008)Google Scholar
  12. 12.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proc. SODA 2010, pp. 503–510 (2010)Google Scholar
  15. 15.
    Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 19–30. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Greiner, G.: Sparse Matrix Computations and their I/O Complexity. Dissertation, Technische Universität München (2012)Google Scholar
  17. 17.
    Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proc. SODA, pp. 139–149 (1995)Google Scholar
  18. 18.
    Katriel, I., Meyer, U.: Elementary graph algorithms in external memory. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 62–84. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Arge, L., Goodrich, M.T., Sitchinava, N.: Parallel external memory graph algorithms. In: IPDPS, pp. 1–11 (2010)Google Scholar
  20. 20.
    Dadoun, N., Kirkpatrick, D.G.: Parallel construction of subdivision hierarchies. J. Comput. Syst. Sci. 39(2), 153–165 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Vishkin, U.: Randomized speed-ups in parallel computation. In: Proc. STOC, pp. 230–239 (1984)Google Scholar
  22. 22.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M. (Meta) kernelization. In: Proc. FOCS, pp. 629–638 (2009)Google Scholar
  23. 23.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. CoRR abs/1207.0835 (2012)Google Scholar
  24. 24.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\mathcal{F}\)-deletion: Approximation and optimal FPT algorithms. CoRR abs/1204.4230 (2012)Google Scholar
  25. 25.
    Jacob, R., Lieber, T., Sitchinava, N.: On the complexity of list ranking in the parallel external memory model. In: Proc. MFCS (to appear, 2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Riko Jacob
    • 1
  • Tobias Lieber
    • 1
  • Matthias Mnich
    • 2
  1. 1.Institute for Theoretical Computer ScienceETH ZürichSwitzerland
  2. 2.Cluster of Excellence MMCISaarbrückenGermany

Personalised recommendations