Strong Completeness for Iteration-Free Coalgebraic Dynamic Logics

  • Helle Hvid Hansen
  • Clemens Kupke
  • Raul Andres Leal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8705)


We present a (co)algebraic treatment of iteration-free dynamic modal logics such as Propositional Dynamic Logic (PDL) and Game Logic (GL), both without star. The main observation is that the program/game constructs of PDL/GL arise from monad structure, and the axioms of these logics correspond to certain compatibilty requirements between the modalities and this monad structure. Our main contribution is a general soundness and strong completeness result for PDL-like logics for T-coalgebras where T is a monad and the ”program” constructs are given by sequential composition, test, and pointwise extensions of operations of T.


Coherence Manes Kelly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: a complete axiomatisation. Fundamenta Informaticae 45, 173–194 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Berwanger, D.: Game Logic is strong enough for parity games. Studia Logica 75(2), 205–219 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chellas, B.F.: Modal Logic - An Introduction. Cambridge University Press (1980)Google Scholar
  4. 4.
    Cirstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. In: Abramsky, S. (ed.) Visions of Computer Science 2008 (2008)Google Scholar
  5. 5.
    Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. J. of Computer and System Sciences 18, 194–211 (1979)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Goncharov, S., Schröder, L.: A relatively complete generic Hoare logic for order-enriched effects. In: Proceedings of LICS 2013, pp. 273–282. IEEE (2013)Google Scholar
  7. 7.
    Gumm, H.P.: Universal Coalgebras and their Logics (2009)Google Scholar
  8. 8.
    Hansen, H.H.: Monotonic modal logic (Master’s thesis). Research Report PP-2003-24, Inst. for Logic, Language and Computation. University of Amsterdam (2003)Google Scholar
  9. 9.
    Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Proceedings of CMCS 2004. ENTCS, vol. 106, pp. 121–143. Elsevier (2004)Google Scholar
  10. 10.
    Hansen, H., Kupke, C., Leal, R.: Strong completeness for iteration-free coalgebraic dynamic logics. Tech. rep., ICIS, Radboud University Nijmegen (to appear, 2014),
  11. 11.
    Hansen, H., Kupke, C., Pacuit, E.: Neighbourhood structures: bisimilarity and basic model theory. Logical Meth. in Comp. Sci. 5(2:2) (2009)Google Scholar
  12. 12.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press (2000)Google Scholar
  13. 13.
    Hasuo, I.: Generic weakest precondition semantics from monads enriched with order. In: Proceedings of CMCS 2014. LNCS, vol. 8446. Springer (2014)Google Scholar
  14. 14.
    Jacobs, B.: New directions in categorical logic, for classical, probabilistic and quantum logic. In: Logical Meth. in Comp. Sci. (to appear, 2014)Google Scholar
  15. 15.
    Jaocbs, B.: Dijkstra monads in monadic computation. In: Bonsangue, M. (ed.) Proceedings of CMCS 2014. LNCS, vol. 8446, Springer (2014)Google Scholar
  16. 16.
    Johnstone, P.: Stone Spaces. Cambridge University Press (1982)Google Scholar
  17. 17.
    Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure and Appl. Alg. 89, 163–179 (1993)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview. Theor. Comp. Sci. 412(38), 5070–5094 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Logical Meth. Logical Meth. In: Comp. Sci. 8(3:14) (2012)Google Scholar
  20. 20.
    Linton, F.: Some aspects of equational categories. In: Eilenberg, S., Harrison, D., MacLane, S., Röhrl, H. (eds.) Proceedings of the Conference on Categorical Algebra, pp. 84–94. Springer (1966)Google Scholar
  21. 21.
    MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)Google Scholar
  22. 22.
    Manes, E.G.: Algebraic Theories. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  23. 23.
    Markowsky, G.: Free completely distributive lattices. Proc. Amer. Math. Soc. 74(2), 227–228 (1979)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1) (1991)Google Scholar
  25. 25.
    Parikh, R.: The logic of games and its applications. In: Topics in the Theory of Computation. Annals of Discrete Mathematics, vol. 14. Elsevier (1985)Google Scholar
  26. 26.
    Pauly, M., Parikh, R.: Game Logic: An overview. Studia Logica 75(2), 165–182 (2003)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Plotkin, G.D., Power, A.J.: Semantics for algebraic operations. In: Proceedings of MFPS XVII. ENTCS, vol. 45 (2001)Google Scholar
  28. 28.
    Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comp. Sci. 249, 3–80 (2000)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comp. Sci. 390, 230–247 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Transactions on Computational Logics 10(2:13), 1–33 (2009)CrossRefGoogle Scholar
  31. 31.
    Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal logics. In: Proceedings of STACS 2009, pp. 673–684 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Helle Hvid Hansen
    • 1
    • 2
  • Clemens Kupke
    • 3
  • Raul Andres Leal
    • 4
  1. 1.Radboud University NijmegenThe Netherlands
  2. 2.CWI AmsterdamThe Netherlands
  3. 3.University of StrathclydeUK
  4. 4.Cap GeminiAmsterdamThe Netherlands

Personalised recommendations