Specifying and Verifying Properties of Space

  • Vincenzo Ciancia
  • Diego Latella
  • Michele Loreti
  • Mieke Massink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8705)


The interplay between process behaviour and spatial aspects of computation has become more and more relevant in Computer Science, especially in the field of collective adaptive systems, but also, more generally, when dealing with systems distributed in physical space. Traditional verification techniques are well suited to analyse the temporal evolution of programs; properties of space are typically not explicitly taken into account. We propose a methodology to verify properties depending upon physical space. We define an appropriate logic, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. We lift the topological definitions to a more general setting, also encompassing discrete, graph-based structures. We further extend the framework with a spatial until operator, and define an efficient model checking procedure, implemented in a proof-of-concept tool.


Topological Space Model Check Modal Logic Closure Operator Closure Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aiello, M.: Spatial Reasoning: Theory and Practice. PhD thesis, Institute of Logic, Language and Computation, University of Amsterdam (2002)Google Scholar
  2. 2.
    Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer (2007)Google Scholar
  3. 3.
    Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)Google Scholar
  4. 4.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS, pp. 355–364. IEEE Computer Society Press (2011)Google Scholar
  5. 5.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)CrossRefGoogle Scholar
  6. 6.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients. In: POPL, pp. 365–377. ACM (2000)Google Scholar
  9. 9.
    Chaintreau, A., Le Boudec, J., Ristanovic, N.: The age of gossip: Spatial mean field regime. In: SIGMETRICS, pp. 109–120. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space - extended version. CoRR, abs/1406.6393 (2014)Google Scholar
  11. 11.
    De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)CrossRefGoogle Scholar
  12. 12.
    Del Bimbo, A., Vicario, E., Zingoni, D.: Symbolic description and visual querying of image sequences using spatio-temporal logic. IEEE Trans. Knowl. Data Eng. 7(4), 609–622 (1995)CrossRefGoogle Scholar
  13. 13.
    Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Information and Computation 204(4), 524–560 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Gadducci, F., Lluch Lafuente, A.: Graphical encoding of a spatial logic for the π-calculus. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 209–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Galton, A.: A generalized topological view of motion in discrete space. Theoretical Computer Science 305(1-3), 111 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic =? In: Aiello, et al. (eds.) [2], pp. 497–564Google Scholar
  19. 19.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topology and Algorithms for Computer Imagery. House Dr. Baerbel Kovalevski (2008)Google Scholar
  20. 20.
    Kremer, P., Mints, G.: Dynamic topological logic. In: Aiello, et al. (eds.) [2], pp. 565–606Google Scholar
  21. 21.
    Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86(8), 621–630 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Smyth, M.B., Webster, J.: Discrete spatial models. In: Aiello, et al. (eds.) [2], pp. 713–798Google Scholar
  24. 24.
    van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial Logics, pp. 217–298 (2007)Google Scholar
  25. 25.
    Yung Kong, T., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3), 357–393 (1989)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Vincenzo Ciancia
    • 1
  • Diego Latella
    • 1
  • Michele Loreti
    • 2
  • Mieke Massink
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNRItaly
  2. 2.Università di FirenzeItaly

Personalised recommendations