Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus

  • Patrick Baillot
  • Erika De Benedetti
  • Simona Ronchi Della Rocca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8705)


In this paper an implicit characterization of the complexity classes k-EXP and k-FEXP, for k ≥ 0, is given, by a type assignment system for a stratified λ-calculus, where types for programs are witnesses of the corresponding complexity class. Types are formulae of Elementary Linear Logic (ELL), and the hierarchy of complexity classes k-EXP is characterized by a hierarchy of types.


Implicit computational complexity Linear logic Lambda-calculus 


  1. 1.
    Baillot, P.: Stratified coherence spaces: a denotational semantics for light linear logic. Theor. Comput. Sci. 318(1-2), 29–55 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baillot, P.: Elementary linear logic revisited for polynomial time and an exponential time hierarchy. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 337–352. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baillot, P., De Benedetti, E., Ronchi Della Rocca, S.: Characterizing polynomial and exponential complexity classes in elementary lambda-calculus. Tech. rep., 31 pages (2014),
  4. 4.
    Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Light logics and the call-by-value lambda-calculus. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  6. 6.
    Dal Lago, U.: Context semantics, linear logic, and computational complexity. ACM Trans. Comput. Log. 10(4) (2009)Google Scholar
  7. 7.
    Dal Lago, U., Masini, A., Zorzi, M.: Quantum implicit computational complexity. Theor. Comput. Sci. 411(2), 377–409 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Danos, V., Joinet, J.B.: Linear logic and elementary time. Inf. Comput. 183(1), 123–137 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jones, N.D.: Computability and complexity - from a programming perspective. Foundations of computing series. MIT Press (1997)Google Scholar
  11. 11.
    Jones, N.D.: The expressive power of higher-order types or, life without cons. J. Funct. Program. 11(1), 5–94 (2001)CrossRefGoogle Scholar
  12. 12.
    Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2), 163–180 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Leivant, D.: Predicative recurrence and computational complexity I: word recurrence and poly-time. In: Feasible Mathematics II, pp. 320–343. Birkhauser (1994)Google Scholar
  14. 14.
    Leivant, D.: Calibrating computational feasibility by abstraction rank. In: LICS, p. 345. IEEE Computer Society (2002)Google Scholar
  15. 15.
    Leivant, D., Marion, J.Y.: Lambda-calculus characterizations of poly-time. Fundam. Inform. 19(1/2), 167–184 (1993)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Madet, A.: Implicit Complexity in Concurrent Lambda-Calculi. Ph.D. thesis, Université Paris 7 (December 2012),
  17. 17.
    Madet, A., Amadio, R.M.: An elementary affine lambda-calculus with multithreading and side effects. In: Ong, L. (ed.) Typed Lambda Calculi and Applications. LNCS, vol. 6690, pp. 138–152. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Marion, J.Y.: A type system for complexity flow analysis. In: LICS, pp. 123–132. IEEE Computer Society (2011)Google Scholar
  19. 19.
    Mazza, D.: Linear logic and polynomial time. Mathematical Structures in Computer Science 16(6), 947–988 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda-Calculus: a Metamodel for Computation. Texts in Theoretical Computer Science. Springer, Berlin (2004),,5-40356-72-14202886-0,00.html CrossRefGoogle Scholar
  21. 21.
    Ronchi Della Rocca, S., Roversi, L.: Lambda-calculus and intuitionistic linear logic. Studia Logica 59(3), 417–448 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Terui, K.: Light affine lambda-calculus and polynomial time strong normalization. Arch. Math. Log. 46(3-4), 253–280 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Patrick Baillot
    • 1
  • Erika De Benedetti
    • 1
    • 2
  • Simona Ronchi Della Rocca
    • 2
  1. 1.CNRS, ENS de Lyon, INRIA, UCBLUniversité de Lyon, LIPLyonFrance
  2. 2.Dipartimento di InformaticaUniversità degli Studi di TorinoTorinoItaly

Personalised recommendations