Advertisement

Qualitative Concurrent Parity Games: Bounded Rationality

  • Krishnendu Chatterjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8704)

Abstract

We study two-player concurrent games on finite-state graphs played for an infinite number of rounds, where in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. The objectives are ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respectively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). While the qualitative analysis problem for concurrent parity games with infinite-memory, infinite-precision randomized strategies was studied before, we study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision, or infinite-precision; and in terms of memory, strategies can be memoryless, finite-memory, or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in \(\mathcal{O}(n^{2d+3})\) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. Our symbolic algorithms are based on a characterization of the winning sets as μ-calculus formulas, however, our μ-calculus formulas are crucially different from the ones for concurrent parity games (without bounded rationality); and our memoryless witness strategy constructions are significantly different from the infinite-memory witness strategy constructions for concurrent parity games.

Keywords

Pure Strategy Markov Decision Process Stochastic Game Bounded Rationality Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)Google Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: FOCS 1997, pp. 100–109. IEEE (1997)Google Scholar
  3. 3.
    Chatterjee, K.: Stochastic omega-Regular Games. PhD thesis, UC Berkeley (2007)Google Scholar
  4. 4.
    Chatterjee, K.: Bounded rationality in concurrent parity games. CoRR, abs/1107.2146 (2011)Google Scholar
  5. 5.
    Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observable Markov decision processes with omega-regular objectives. In: CSL (2013)Google Scholar
  6. 6.
    Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement in concurrent reachability games. In: QEST 2006. IEEE (2006)Google Scholar
  7. 7.
    Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of quantitative concurrent parity games. In: SODA 2006. IEEE (2006)Google Scholar
  8. 8.
    Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Qualitative concurrent parity games. ACM ToCL (2011)Google Scholar
  9. 9.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS, pp. 505–516 (2010)Google Scholar
  10. 10.
    Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The complexity of partial-observation stochastic parity games with finite-memory strategies. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 242–257. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Chatterjee, K., Henzinger, T.A.: Strategy improvement and randomized subexponential algorithms for stochastic parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 512–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple stochastic parity games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Church, A.: Logic, arithmetic, and automata. In: Proc. of Int. Cong. of Math., pp. 23–35 (1962)Google Scholar
  14. 14.
    Condon, A.: The complexity of stochastic games. I&C 96, 203–224 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    de Alfaro, L., Henzinger, T.A.: Concurrent ω-regular games. In: LICS, pp. 141–154 (2000)Google Scholar
  16. 16.
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. TCS 386(3), 188–217 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: The control of synchronous systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 458–473. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. Journal of Computer and System Sciences 68, 374–397 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-independent Circuits. The MIT Press (1989)Google Scholar
  20. 20.
    Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: LICS 1997, pp. 99–110. IEEE (1997)Google Scholar
  21. 21.
    Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS 1988, pp. 328–337. IEEE (1988)Google Scholar
  22. 22.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–377. IEEE (1991)Google Scholar
  23. 23.
    Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)Google Scholar
  26. 26.
    Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.P.: Exact algorithms for solving stochastic games (extended abstract). In: STOC, pp. 205–214 (2011)Google Scholar
  27. 27.
    Hansen, K.A., Koucký, M., Miltersen, P.B.: Winning concurrent reachability games requires doubly-exponential patience. In: LICS, pp. 332–341 (2009)Google Scholar
  28. 28.
    Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: SODA 2006, pp. 117–123. ACM-SIAM (2006)Google Scholar
  29. 29.
    Kechris, A.: Classical Descriptive Set Theory. Springer (1995)Google Scholar
  30. 30.
    Martin, D.A.: The determinacy of Blackwell games. J. of Symbolic Logic 63(4), 1565–1581 (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM Press (1989)Google Scholar
  32. 32.
    Raghavan, T.E.S., Filar, J.A.: Algorithms for stochastic games — a survey. ZOR — Methods and Models of Op. Res. 35, 437–472 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)Google Scholar
  35. 35.
    Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. USA 39, 1095–1100 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, ch. 4, pp. 135–191. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  37. 37.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS 1985, pp. 327–338. IEEE (1985)Google Scholar
  38. 38.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. In: TCS, vol. 200(1-2), pp. 135–183 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  1. 1.ISTAustria

Personalised recommendations