Advertisement

A Categorical Semantics of Signal Flow Graphs

  • Filippo Bonchi
  • Paweł Sobociński
  • Fabio Zanasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8704)

Abstract

We introduce \(\mathbb{IH}\), a sound and complete graphical theory of vector subspaces over the field of polynomial fractions, with relational composition. The theory is constructed in modular fashion, using Lack’s approach to composing PROPs with distributive laws.

We then view string diagrams of \(\mathbb{IH}\) as generalised stream circuits by using a formal Laurent series semantics. We characterize the subtheory where circuits adhere to the classical notion of signal flow graphs, and illustrate the use of the graphical calculus on several examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)Google Scholar
  2. 2.
    Baez, J.C.: Network theory (2014), http://math.ucr.edu/home/baez/networks/
  3. 3.
    Baez, J.C., Erbele, J.: Categories in control. CoRR, abs/1405.6881 (2014), http://arxiv.org/abs/1405.6881
  4. 4.
    Barnabei, M., Guerrini, C., Montefusco, L.: Some algebraic aspects of signal processing. Linear Algebra and its Applications 284(1-3), 3–17 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Basold, H., Bonsangue, M., Hansen, H.H., Rutten, J.: (co)algebraic characterizations of signal flow graphs. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Panangaden Festschrift. LNCS, vol. 8464, pp. 124–145. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Berstel, J., Reutenauer, C.: Rational series and their languages. EATCS Monographs on Theoretical Computer Science 12 (1988)Google Scholar
  7. 7.
    Bonchi, F., Sobociński, P., Zanasi, F.: Interacting bialgebras are Frobenius. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 351–365. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Bonchi, F., Sobociński, P., Zanasi, F.: Interacting Hopf algebras. CoRR, abs/1403.7048 (2014), http://arxiv.org/abs/1403.7048
  9. 9.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366, 98–120 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bruni, R., Melgratti, H.C., Montanari, U., Sobociński, P.: Connector algebras for C/E and P/T nets’ interactions. Log. Meth. Comput. Sci. 9(16) (2013)Google Scholar
  11. 11.
    Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and non-locality in categorical quantum mechanics. In: LiCS 2012, pp. 245–254 (2012)Google Scholar
  12. 12.
    Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): an algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 322–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Lack, S.: Composing PROPs. Theor. App. Categories 13(9), 147–163 (2004)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Lahti, B.P.: Signal Processing and Linear Systems. Oxford University Press (1998)Google Scholar
  15. 15.
    Mac Lane, S.: Categorical algebra. Bull. Amer. Math. Soc. 71, 40–106 (1965)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mason, S.J.: Feedback Theory: I. Some Properties of Signal Flow Graphs. Massachusetts Institute of Technology, Research Laboratory of Electronics (1953)Google Scholar
  17. 17.
    Milius, S.: A sound and complete calculus for finite stream circuits. In: LICS (2010)Google Scholar
  18. 18.
    Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow graphs. Theor. Comput. Sci. 343(3), 443–481 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Selinger, P.: Dagger compact closed categories and completely positive maps (extended abstract). Electr. Notes Theor. Comput. Sci. 170, 139–163 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Selinger, P.: A survey of graphical languages for monoidal categories. arXiv:0908.3347v1 [math.CT] (2009)Google Scholar
  21. 21.
    Sobociński, P.: Representations of petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Willems, J.C.: The behavioural approach to open and interconnected systems. IEEE Contr. Syst. Mag. 27, 46–99 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Paweł Sobociński
    • 2
  • Fabio Zanasi
    • 1
  1. 1.ENS de LyonUniversité de Lyon, CNRS, INRIAFrance
  2. 2.ECSUniversity of SouthamptonUK

Personalised recommendations