Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces

  • Mehmet Z. Baykara


Among the large variety of scanning probe microscopy techniques, noncontact atomic force microscopy (NC-AFM) stands out with its capability of atomic-resolution imaging and spectroscopy measurements on conducting, semiconducting as well as insulating sample surfaces. In this chapter, we review the fundamental experimental and instrumental methodology associated with the technique and present key results obtained on different classes of material surfaces. In addition to atomic-resolution imaging, the use of NC-AFM towards the goal of atomic-resolution force spectroscopy is emphasized.


Atomic Force Microscopy Atomic Force Spectroscopy 


  1. 1.
    Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55(6):726–735Google Scholar
  2. 2.
    Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7x7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRefGoogle Scholar
  3. 3.
    Chen CJ (2007) Introduction to scanning tunneling microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. 4.
    Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84(3):1343CrossRefGoogle Scholar
  5. 5.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRefGoogle Scholar
  6. 6.
    Albrecht TR, Quate CF (1988) Atomic resolution with the atomic force microscope on conductors and nonconductors. J Vac Sci Technol Vac Surf Films 6(2):271–274CrossRefGoogle Scholar
  7. 7.
    Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol-Vac Surf Films 8(4):3386–3396CrossRefGoogle Scholar
  8. 8.
    Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57(3):316–318CrossRefGoogle Scholar
  9. 9.
    Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9(2):1353–1357CrossRefGoogle Scholar
  10. 10.
    Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047CrossRefGoogle Scholar
  11. 11.
    Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical-lever. J Appl Phys 65(1):164–167CrossRefGoogle Scholar
  12. 12.
    Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55(25):2588–2590CrossRefGoogle Scholar
  13. 13.
    Moser A, Hug HJ, Jung T, Schwarz UD, Guntherodt HJ (1993) A miniature fiber optic force microscope scan head. Meas Sci Technol 4(7):769–775CrossRefGoogle Scholar
  14. 14.
    Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3(12):1281–1286CrossRefGoogle Scholar
  15. 15.
    Meyer G, Amer NM (1990) Optical-beam-deflection atomic force microscopy – the nacl (001) surface. Appl Phys Lett 56(21):2100–2101CrossRefGoogle Scholar
  16. 16.
    Marti O, Colchero J, Mlynek J (1993) Friction and forces on an atomic-scale. Nanosour Manip Atoms Under High Fields Temp Appl 235:253–269CrossRefGoogle Scholar
  17. 17.
    Meyer G, Amer NM (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57(20):2089–2091CrossRefGoogle Scholar
  18. 18.
    Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945CrossRefGoogle Scholar
  19. 19.
    Eaton PJ, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  20. 20.
    Giessibl FJ, Binnig G (1992) Investigation of the (001) cleavage plane of potassium-bromide with an atomic force microscope at 4.2-k in ultra-high vacuum. Ultramicroscopy 42:281–289CrossRefGoogle Scholar
  21. 21.
    Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456CrossRefGoogle Scholar
  22. 22.
    Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy – taking surface imaging to the next level. Adv Mater 22(26–27):2838–2853CrossRefGoogle Scholar
  23. 23.
    Giessibl FJ (1995) Atomic-resolution of the silicon (111)-(7x7) surface by atomic-force microscopy. Science 267(5194):68–71CrossRefGoogle Scholar
  24. 24.
    Sugawara Y, Ohta M, Ueyama H, Morita S (1995) Defect motion on an InP(110) surface observed with noncontact atomic-force microscopy. Science 270(5242):1646–1648CrossRefGoogle Scholar
  25. 25.
    Kitamura S, Iwatsuki M (1995) Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh-vacuum noncontact atomic-force microscopy. Jpn J Appl Phys Part 2 Lett 34(1B):L145–L148CrossRefGoogle Scholar
  26. 26.
    Ueyama H, Ohta M, Sugawara Y, Morita S (1995) Atomically resolved InP(110) surface observed with noncontact ultrahigh-vacuum atomic-force microscope. Jpn J Appl Phys Part 2 Lett 34(8B):L1086–L1088CrossRefGoogle Scholar
  27. 27.
    Morita S, Wiesendanger R, Meyer E (2002) Noncontact atomic force microscopy. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Morita S, Giessibl FJ, Wiesendanger R (2009) Noncontact atomic force microscopy, vol 2. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRefGoogle Scholar
  30. 30.
    Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3):949–983CrossRefGoogle Scholar
  31. 31.
    Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331CrossRefGoogle Scholar
  32. 32.
    Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501CrossRefGoogle Scholar
  33. 33.
    Morita S (2013) Atomically resolved force microscopy. J Vac Sci Technol A 31(5):050802CrossRefGoogle Scholar
  34. 34.
    Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673CrossRefGoogle Scholar
  35. 35.
    Yokoyama K, Ochi T, Yoshimoto A, Sugawara Y, Morita S (2000) Atomic resolution imaging on Si(100)2x1 and Si(100)2x1: H surfaces with noncontact atomic force microscopy. Japanese J Appl Phys Part 2 Lett 39(2A):L113–L115CrossRefGoogle Scholar
  36. 36.
    Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Dynamic-mode scanning force microscopy study of n-InAs(110)-(1x1) at low temperatures. Phys Rev B 61(4):2837–2845CrossRefGoogle Scholar
  37. 37.
    Kitamura S, Iwatsuki M (1996) Observation of silicon surfaces using ultrahigh-vacuum noncontact, atomic force microscopy. Jpn J Appl Phys Part 2-Lett 35(5B):L668–L671CrossRefGoogle Scholar
  38. 38.
    Sugawara Y, Uchihashi T, Abe M, Morita S (1999) True atomic resolution imaging of surface structure and surface charge on the GaAs(110). Appl Surf Sci 140(3–4):371–375CrossRefGoogle Scholar
  39. 39.
    Sawada D, Sugimoto Y, Morita K, Abe M, Morita S (2010) Simultaneous atomic force and scanning tunneling microscopy study of the Ge(111)-c(2x8) surface. J Vac Sci Technol B 28(3):C4D1CrossRefGoogle Scholar
  40. 40.
    Yokoyama K, Ochi T, Sugawara Y, Morita S (1999) Atomically resolved silver imaging on the Si(111)-(root 3 x root 3)-Ag surface using a noncontact atomic force microscope. Phys Rev Lett 83(24):5023–5026CrossRefGoogle Scholar
  41. 41.
    Sweetman A, Gangopadhyay S, Danza R, Berdunov N, Moriarty P (2009) qPlus atomic force microscopy of the Si(100) surface: buckled, split-off, and added dimers. Appl Phys Lett 95(6):063112CrossRefGoogle Scholar
  42. 42.
    Sweetman A, Danza R, Gangopadhyay S, Moriarty P (2012) Imaging and manipulation of the Si(100) surface by small-amplitude NC-AFM at zero and very low applied bias. J Phys Condens Matter 24(8):084009CrossRefGoogle Scholar
  43. 43.
    Sweetman A, Stannard A, Sugimoto Y, Abe M, Morita S, Moriarty P (2013) Simultaneous noncontact AFM and STM of Ag:Si(111)-(root 3 x root 3)R30°. Phys Rev B 87(7):075310CrossRefGoogle Scholar
  44. 44.
    Li YJ, Nomura H, Ozaki N, Naitoh Y, Kageshima M, Sugawara Y, Hobbs C, Kantorovich L (2006) Origin of p(2 x 1) phase on Si(001) by noncontact atomic force microscopy at 5 k. Phys Rev Lett 96(10):106104CrossRefGoogle Scholar
  45. 45.
    Naitoh Y, Ma ZM, Li YJ, Kageshima M, Sugawara Y (2010) Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J Vac Sci Technol B 28(6):1210–1214CrossRefGoogle Scholar
  46. 46.
    Minobe T, Uchihashi T, Tsukamoto T, Orisaka S, Sugawara Y, Morita S (1999) Distance dependence of noncontact-AFM image contrast on Si(111)root 3 X root 3-Ag structure. Appl Surf Sci 140(3–4):298–303CrossRefGoogle Scholar
  47. 47.
    Orisaka S, Minobe T, Uchihashi T, Sugawara Y, Morita S (1999) The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope. Appl Surf Sci 140(3–4):243–246CrossRefGoogle Scholar
  48. 48.
    Loppacher C, Bammerlin M, Guggisberg M, Schar S, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Dynamic force microscopy of copper surfaces: atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys Rev B 62(24):16944–16949CrossRefGoogle Scholar
  49. 49.
    Caciuc V, Holscher H, Weiner D, Fuchs H, Schirmeisen A (2008) Noncontact atomic force microscopy imaging mechanism on Ag(110): experiment and first-principles theory. Phys Rev B 77(4):045411CrossRefGoogle Scholar
  50. 50.
    Konig T, Simon GH, Rust HP, Heyde M (2009) Atomic resolution on a metal single crystal with dynamic force microscopy. Appl Phys Lett 95(8):083116CrossRefGoogle Scholar
  51. 51.
    Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface. Europhys Lett 48(3):276–279CrossRefGoogle Scholar
  52. 52.
    Barth C, Reichling M (2001) Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414(6859):54–57CrossRefGoogle Scholar
  53. 53.
    Reichling M, Barth C (1999) Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys Rev Lett 83(4):768–771CrossRefGoogle Scholar
  54. 54.
    Barth C, Foster AS, Reichling M, Shluger AL (2001) Contrast formation in atomic resolution scanning force microscopy on CaF(2)(111): experiment and theory. J Phys-Condens Matter 13(10):2061–2079CrossRefGoogle Scholar
  55. 55.
    Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402CrossRefGoogle Scholar
  56. 56.
    Ruschmeier K, Schirmeisen A, Hoffmann R (2009) Site-specific force-vector field studies of KBr(001) by atomic force microscopy. Nanotechnology 20(26):264013CrossRefGoogle Scholar
  57. 57.
    Gritschneder S, Namai Y, Iwasawa Y, Reichling M (2005) Structural features of CeO2(111) revealed by dynamic SFM. Nanotechnology 16(3):S41–S48CrossRefGoogle Scholar
  58. 58.
    Ostendorf F, Torbrugge S, Reichling M (2008) Atomic scale evidence for faceting stabilization of a polar oxide surface. Phys Rev B 77(4):041405CrossRefGoogle Scholar
  59. 59.
    Rasmussen MK, Foster AS, Canova FF, Hinnemann B, Helveg S, Meinander K, Besenbacher F, Lauritsen JV (2011) Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4(100) surface: experiments and first-principles simulations. Phys Rev B 84(23):235419CrossRefGoogle Scholar
  60. 60.
    Hoffmann R, Weiner D, Schirmeisen A, Foster AS (2009) Sublattice identification in noncontact atomic force microscopy of the NaCl(001) surface. Phys Rev B 80(11):115426CrossRefGoogle Scholar
  61. 61.
    Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110–1114CrossRefGoogle Scholar
  62. 62.
    Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2(10):821–825CrossRefGoogle Scholar
  63. 63.
    Meyer G, Gross L, Mahn F, Repp J (2012) Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation. Chimia 66(1–2):10–15CrossRefGoogle Scholar
  64. 64.
    Mohn F, Schuler B, Gross L, Meyer G (2013) Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl Phys Lett 102(7):073109CrossRefGoogle Scholar
  65. 65.
    Gotsmann B, Anczykowski B, Seidel C, Fuchs H (1999) Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl Surf Sci 140(3–4):314–319CrossRefGoogle Scholar
  66. 66.
    Durig U (1999) Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75(3):433–435CrossRefGoogle Scholar
  67. 67.
    Giessibl FJ (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125CrossRefGoogle Scholar
  68. 68.
    Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803CrossRefGoogle Scholar
  69. 69.
    Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010–16015CrossRefGoogle Scholar
  70. 70.
    Durig U (2000) Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl Phys Lett 76(9):1203–1205CrossRefGoogle Scholar
  71. 71.
    Holscher H, Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes. Phys Rev B 61(19):12678–12681CrossRefGoogle Scholar
  72. 72.
    Gotsmann B, Fuchs H (2001) Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system. Phys Rev Lett 86(12):2597–2600CrossRefGoogle Scholar
  73. 73.
    Lantz MA, Hug HJ, Hoffmann R, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2001) Quantitative measurement of short-range chemical bonding forces. Science 291(5513):2580–2583CrossRefGoogle Scholar
  74. 74.
    Hoffmann R, Kantorovich LN, Baratoff A, Hug HJ, Guntherodt HJ (2004) Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys Rev Lett 92(14):146103CrossRefGoogle Scholar
  75. 75.
    Abe M, Sugimoto Y, Custance O, Morita S (2005) Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl Phys Lett 87(17):173503CrossRefGoogle Scholar
  76. 76.
    Sugimoto Y, Innami S, Abe M, Custance O, Morita S (2007) Dynamic force spectroscopy using cantilever higher flexural modes. Appl Phys Lett 91(9):093120CrossRefGoogle Scholar
  77. 77.
    Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131):64–67CrossRefGoogle Scholar
  78. 78.
    Langkat SM, Holscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surf Sci 527(1–3):12–20CrossRefGoogle Scholar
  79. 79.
    Schirmeisen A, Weiner D, Fuchs H (2006) Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys Rev Lett 97(13):136101CrossRefGoogle Scholar
  80. 80.
    Heyde M, Simon GH, Rust HP, Freund HJ (2006) Probing adsorption sites on thin oxide films by dynamic force microscopy. Appl Phys Lett 89(26):263107CrossRefGoogle Scholar
  81. 81.
    Ruschmeier K, Schirmeisen A, Hoffmann R (2008) Atomic-scale force-vector fields. Phys Rev Lett 101(15):156102CrossRefGoogle Scholar
  82. 82.
    Sugimoto Y, Namikawa T, Miki K, Abe M, Morita S (2008) Vertical and lateral force mapping on the Si(111)-(7x7) surface by dynamic force microscopy. Phys Rev B 77(19):195424CrossRefGoogle Scholar
  83. 83.
    Ashino M, Obergfell D, Haluska M, Yang SH, Khlobystov AN, Roth S, Wiesendanger R (2008) Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 3(6):337–341CrossRefGoogle Scholar
  84. 84.
    Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 4(5):307–310CrossRefGoogle Scholar
  85. 85.
    Baykara MZ, Schwendemann TC, Albers BJ, Pilet N, Monig H, Altman EI, Schwarz UD (2012) Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001). Nanotechnology 23(40):405703CrossRefGoogle Scholar
  86. 86.
    Baykara MZ, Todorovic M, Monig H, Schwendemann TC, Unverdi O, Rodrigo L, Altman EI, Perez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414CrossRefGoogle Scholar
  87. 87.
    Fremy S, Kawai S, Pawlak R, Glatzel T, Baratoff A, Meyer E (2012) Three-dimensional dynamic force spectroscopy measurements on KBr(001): atomic deformations at small tip-sample separations. Nanotechnology 23(5):055401CrossRefGoogle Scholar
  88. 88.
    Baykara MZ, Dagdeviren OE, Schwendemann TC, Monig H, Altman EI, Schwarz UD (2012) Probing three-dimensional surface force fields with atomic resolution: measurement strategies, limitations, and artifact reduction. Beilstein J Nanotechnol 3:637–650CrossRefGoogle Scholar
  89. 89.
    Pethica JB (1986) Interatomic forces in scanning tunneling microscopy – giant corrugations of the graphite surface – comment. Phys Rev Lett 57(25):3235CrossRefGoogle Scholar
  90. 90.
    Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-a scale. J Appl Phys 61(10):4723–4729CrossRefGoogle Scholar
  91. 91.
    Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf Sci 290(1–2):L688–L692Google Scholar
  92. 92.
    Castro García R (2010) Amplitude modulation atomic force microscopy. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  93. 93.
    Erlandsson R, Olsson L, Martensson P (1996) Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7. Phys Rev B 54(12):R8309–R8312CrossRefGoogle Scholar
  94. 94.
    Israelachvili JN (2011) Intermolecular and surface forces. Academic, BurlingtonGoogle Scholar
  95. 95.
    Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12(12):125020CrossRefGoogle Scholar
  96. 96.
    Fukui K, Onishi H, Iwasawa Y (1997) Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy. Phys Rev Lett 79(21):4202–4205CrossRefGoogle Scholar
  97. 97.
    Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001). Appl Surf Sci 140(3–4):247–252CrossRefGoogle Scholar
  98. 98.
    Giessibl FJ (2000) Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl Phys Lett 76(11):1470–1472CrossRefGoogle Scholar
  99. 99.
    Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7x7) surface observed by atomic force microscopy. Science 289(5478):422–425CrossRefGoogle Scholar
  100. 100.
    Giessibl FJ, Hembacher S, Herz M, Schiller C, Mannhart J (2004) Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15(2):S79–S86CrossRefGoogle Scholar
  101. 101.
    Albers BJ, Liebmann M, Schwendemann TC, Baykara MZ, Heyde M, Salmeron M, Altman EI, Schwarz UD (2008) Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev Sci Instrum 79(3):033704CrossRefGoogle Scholar
  102. 102.
    Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (1999) Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl Surf Sci 140(3–4):352–357CrossRefGoogle Scholar
  103. 103.
    Perez R, Payne MC, Stich I, Terakura K (1997) Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys Rev Lett 78(4):678–681CrossRefGoogle Scholar
  104. 104.
    Perez R, Stich I, Payne MC, Terakura K (1998) Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111). Phys Rev B 58(16):10835–10849CrossRefGoogle Scholar
  105. 105.
    Bennewitz R, Bammerlin M, Guggisberg M, Loppacher C, Baratoff A, Meyer E, Guntherodt HJ (1999) Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip-sample interactions and cantilever oscillation characteristics. Surf Interface Anal 27(5–6):462–466CrossRefGoogle Scholar
  106. 106.
    Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151–11155CrossRefGoogle Scholar
  107. 107.
    Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E (2011) Interaction-induced atomic displacements revealed by drift-corrected dynamic force spectroscopy. Phys Rev B 83(3):035421CrossRefGoogle Scholar
  108. 108.
    Sugimoto Y, Ueda K, Abe M, Morita S (2012) Three-dimensional scanning force/tunneling spectroscopy at room temperature. J Phys Condens Matter 24(8):084008CrossRefGoogle Scholar
  109. 109.
    Braun DA, Weiner D, Such B, Fuchs H, Schirmeisen A (2009) Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy. Nanotechnology 20(26):264004CrossRefGoogle Scholar
  110. 110.
    Mohn F, Gross L, Meyer G (2011) Measuring the short-range force field above a single molecule with atomic resolution. Appl Phys Lett 99(5):053106CrossRefGoogle Scholar
  111. 111.
    Such B, Glatzel T, Kawai S, Koch S, Meyer E (2010) Three-dimensional force spectroscopy of KBr(001) by tuning fork-based cryogenic noncontact atomic force microscopy. J Vac Sci Technol B 28(3):C4B1CrossRefGoogle Scholar
  112. 112.
    Such B, Glatzel T, Kawai S, Meyer E, Turansky R, Brndiar J, Stich I (2012) Interplay of the tip-sample junction stability and image contrast reversal on a Cu(111) surface revealed by the 3D force field. Nanotechnology 23(4):045705CrossRefGoogle Scholar
  113. 113.
    Abe M, Sugimoto Y, Custance O, Morita S (2005) Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy. Nanotechnology 16(12):3029–3034CrossRefGoogle Scholar
  114. 114.
    Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S (2007) Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl Phys Lett 90(20):203103CrossRefGoogle Scholar
  115. 115.
    Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Kuhnle A, Reichling M, Hofer WA, Lauritsen JV, Besenbacher F (2008) Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO(2)(110) surface. Phys Rev B 78(4):045416CrossRefGoogle Scholar
  116. 116.
    Oyabu N, Pou P, Sugimoto Y, Jelinek P, Abe M, Morita S, Perez R, Custance O (2006) Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys Rev Lett 96(10):106101CrossRefGoogle Scholar
  117. 117.
    Pou P, Ghasemi SA, Jelinek P, Lenosky T, Goedecker S, Perez R (2009) Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26):264015CrossRefGoogle Scholar
  118. 118.
    Bechstein R, Gonzalez C, Schutte J, Jelinek P, Perez R, Kuhnle A (2009) ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20(50):505703CrossRefGoogle Scholar
  119. 119.
    Arai T, Gritschneder S, Troger L, Reichling M (2010) Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips. J Vac Sci Technol B 28(6):1279–1283CrossRefGoogle Scholar
  120. 120.
    Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kuhnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F (2006) Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17(14):3436–3441CrossRefGoogle Scholar
  121. 121.
    Enevoldsen GH, Foster AS, Christensen MC, Lauritsen JV, Besenbacher F (2007) Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO(2)(110): experiments and atomistic simulations. Phys Rev B 76(20):205415CrossRefGoogle Scholar
  122. 122.
    Uluutku B, Baykara MZ (2013) Effect of lateral tip stiffness on atomic-resolution force field spectroscopy. J Vac Sci Technol B 31(4):041801CrossRefGoogle Scholar
  123. 123.
    Sun ZX, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P (2011) Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys Rev Lett 106(4):046104CrossRefGoogle Scholar
  124. 124.
    Schwarz A, Schwarz UD, Langkat S, Holscher H, Allers W, Wiesendanger R (2002) Dynamic force microscopy with atomic resolution at low temperatures. Appl Surf Sci 188(3–4):245–251CrossRefGoogle Scholar
  125. 125.
    Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A (2011) Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev Sci Instrum 82(6):063704CrossRefGoogle Scholar
  126. 126.
    Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K (2005) True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl Phys Lett 86(3):034103CrossRefGoogle Scholar
  127. 127.
    Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87(3):034101CrossRefGoogle Scholar
  128. 128.
    Fukuma T, Ueda Y, Yoshioka S, Asakawa H (2010) Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys Rev Lett 104(1):016101CrossRefGoogle Scholar
  129. 129.
    Herruzo ET, Asakawa H, Fukuma T, Garcia R (2013) Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7):2678–2685CrossRefGoogle Scholar
  130. 130.
    Asakawa H, Fukuma T (2009) Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism. Rev Sci Instrum 80(10):103703CrossRefGoogle Scholar
  131. 131.
    Asakawa H, Fukuma T (2009) The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid. Nanotechnology 20(26):264008CrossRefGoogle Scholar
  132. 132.
    Mitani Y, Kubo M, Muramoto K, Fukuma T (2009) Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy. Rev Sci Instrum 80(8):083705CrossRefGoogle Scholar
  133. 133.
    Fukuma T (2009) Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Rev Sci Instrum 80(2):023707CrossRefGoogle Scholar
  134. 134.
    Guthner P (1996) Simultaneous imaging of Si(111) 7x7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode. J Vac Sci Technol B 14(4):2428–2431CrossRefGoogle Scholar
  135. 135.
    Luthi R, Meyer E, Bammerlin M, Baratoff A, Lehmann T, Howald L, Gerber C, Guntherodt HJ (1996) Atomic resolution in dynamic force microscopy across steps on Si(111)7x7. Z Physik B-Condens Matter 100(2):165–167CrossRefGoogle Scholar
  136. 136.
    Nakagiri N, Suzuki M, Okiguchi K, Sugimura H (1997) Site discrimination of adatoms in Si(111)-7x7 by noncontact atomic force microscopy. Surf Sci 373(1):L329–L332CrossRefGoogle Scholar
  137. 137.
    Sawada D, Sugimoto Y, Abe M, Morita S (2010) Observation of subsurface atoms of the si(111)-(7x7) surface by atomic force microscopy. Appl Phys Express 3(11):116602CrossRefGoogle Scholar
  138. 138.
    Sugimoto Y, Nakajima Y, Sawada D, Morita K, Abe M, Morita S (2010) Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys Rev B 81(24):245322CrossRefGoogle Scholar
  139. 139.
    Uozumi T, Tomiyoshi Y, Suehira N, Sugawara Y, Morita S (2002) Observation of Si(100) surface with noncontact atomic force microscope at 5 K. Appl Surf Sci 188(3–4):279–284CrossRefGoogle Scholar
  140. 140.
    Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw GA, Kantorovich L, Moriarty P (2011) Toggling bistable atoms via mechanical switching of bond angle. Phys Rev Lett 106(13):136101CrossRefGoogle Scholar
  141. 141.
    Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P (2011) Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: role of defects and dynamics in the mechanical switching of atoms. Phys Rev B 84(8):085426CrossRefGoogle Scholar
  142. 142.
    Sweetman A, Jarvis S, Danza R, Moriarty P (2012) Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: probing the probe. Beilstein J Nanotechnol 3:25–32CrossRefGoogle Scholar
  143. 143.
    Naitoh Y, Li YJ, Nomura H, Kageshima M, Sugawara Y (2010) Effect of surface stress around the sa step of Si(001) on the dimer structure determined by noncontact atomic force microscopy at 5 K. J Physical Soc Japan 79(1):013601CrossRefGoogle Scholar
  144. 144.
    Sugimoto Y, Abe M, Yoshimoto K, Custance O, Yi I, Morita S (2005) Non-contact atomic force microscopy study of the Sn/Si(111) mosaic phase. Appl Surf Sci 241(1–2):23–27CrossRefGoogle Scholar
  145. 145.
    Yi I, Sugimoto Y, Nishi R, Morita S (2006) Study on topographic images of Sn/Si(111)-(root 3 x root 3)R30° surface by non-contact AFM. Surf Sci 600(17):3382–3387CrossRefGoogle Scholar
  146. 146.
    Yi I, Nishi R, Sugimoto Y, Morita S (2007) Non-contact AFM observation of the (root 3x root 3) to (3x3) phase transition on Sn/Ge(111) and Sn/Si(111) surfaces. Appl Surf Sci 253(6):3072–3076CrossRefGoogle Scholar
  147. 147.
    Sugimoto Y, Pou P, Custance O, Jelinek P, Morita S, Perez R, Abe M (2006) Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: the case of the alpha-Sn/Si(111)-(root 3x root 3)R30° surface. Phys Rev B 73(20):205329CrossRefGoogle Scholar
  148. 148.
    Abe M, Sugimoto Y, Morita S (2005) Imaging the restatom of the Ge(111)-c(2x8) surface with noncontact atomic force microscopy at room temperature. Nanotechnology 16(3):S68–S72CrossRefGoogle Scholar
  149. 149.
    Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Detection of doping atom distributions and individual dopants in InAs(110) by dynamic-mode scanning force microscopy in ultrahigh vacuum. Phys Rev B 62(20):13617–13622CrossRefGoogle Scholar
  150. 150.
    Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  151. 151.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefGoogle Scholar
  152. 152.
    Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242CrossRefGoogle Scholar
  153. 153.
    Raza H, Pang CL, Haycock SA, Thornton G (1999) Non-contact atomic force microscopy imaging of TiO2(100) surfaces. Appl Surf Sci 140(3–4):271–275CrossRefGoogle Scholar
  154. 154.
    Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO(2). Phys Rev Lett 102(13):136103CrossRefGoogle Scholar
  155. 155.
    Yurtsever A, Sugimoto Y, Abe M, Morita S (2010) NC-AFM imaging of the TiO(2)(110)-(1x1) surface at low temperature. Nanotechnology 21(16):165702CrossRefGoogle Scholar
  156. 156.
    Yurtsever A, Fernandez-Torre D, Gonzalez C, Jelinek P, Pou P, Sugimoto Y, Abe M, Perez R, Morita S (2012) Understanding image contrast formation in TiO2 with force spectroscopy. Phys Rev B 85(12):125416CrossRefGoogle Scholar
  157. 157.
    Pang CL, Raza H, Haycock SA, Thornton G (2002) Noncontact atomic force microscopy imaging of ultrathin Al2O3 on NiAl(110). Phys Rev B 65(20):201401CrossRefGoogle Scholar
  158. 158.
    Wang J, Howard A, Egdell RG, Pethica JB, Foord JS (2002) Arrangement of rotational domains of the (root 31 x root 31) R +/− 9° reconstruction of Al2O3(0001) revealed by non-contact AFM. Surf Sci 515(2–3):337–343CrossRefGoogle Scholar
  159. 159.
    Simon GH, Konig T, Nilius M, Rust HP, Heyde M, Freund HJ (2008) Atomically resolved force microscopy images of complex surface unit cells: ultrathin alumina film on NiAl(110). Phys Rev B 78(11):113401CrossRefGoogle Scholar
  160. 160.
    Simon GH, Konig T, Rust HP, Heyde M, Freund HJ (2009) Atomic structure of the ultrathin alumina on NiAl(110) and its antiphase domain boundaries as seen by frequency modulation dynamic force microscopy. New J Phys 11(9):093009CrossRefGoogle Scholar
  161. 161.
    Lauritsen JV, Jensen MCR, Venkataramani K, Hinnemann B, Helveg S, Clausen BS, Besenbacher F (2009) Atomic-scale structure and stability of the root 31 x root 31R9° surface of Al2O3(0001). Phys Rev Lett 103(7):076103CrossRefGoogle Scholar
  162. 162.
    Heyde M, Simon GH, Lichtenstein L (2013) Resolving oxide surfaces – from point and line defects to complex network structures. Phys Status Solidi B-Basic Solid State Phys 250(5):895–921CrossRefGoogle Scholar
  163. 163.
    Simon GH, Konig T, Heinke L, Lichtenstein L, Heyde M, Freund HJ (2011) Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions. New J Phys 13(12):123028CrossRefGoogle Scholar
  164. 164.
    Fukui K, Namai Y, Iwasawa Y (2002) Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Appl Surf Sci 188(3–4):252–256CrossRefGoogle Scholar
  165. 165.
    Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today 85(2–4):79–91CrossRefGoogle Scholar
  166. 166.
    Namai Y, Fukui K, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B 107(42):11666–11673CrossRefGoogle Scholar
  167. 167.
    Gritschneder S, Reichling M (2007) Structural elements of CeO2(111) surfaces. Nanotechnology 18(4):044024CrossRefGoogle Scholar
  168. 168.
    Gritschneder S, Reichling M (2008) Atomic resolution imaging on CeO2(111) with hydroxylated probes. J Phys Chem C 112(6):2045–2049CrossRefGoogle Scholar
  169. 169.
    Pieper HH, Derks C, Zoellner MH, Olbrich R, Troger L, Schroeder T, Neumann M, Reichling M (2012) Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films. Phys Chem Chem Phys 14(44):15361–15368CrossRefGoogle Scholar
  170. 170.
    Hosoi H, Sueoka K, Hayakawa K, Mukasa K (2000) Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM. Appl Surf Sci 157(4):218–221CrossRefGoogle Scholar
  171. 171.
    Allers W, Langkat S, Wiesendanger R (2001) Dynamic low-temperature scanning force microscopy on nickel oxide (001). Appl Phys Mater Sci Process 72:S27–S30CrossRefGoogle Scholar
  172. 172.
    Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525CrossRefGoogle Scholar
  173. 173.
    Schmid M, Mannhart J, Giessibl FJ (2008) Searching atomic spin contrast on nickel oxide (001) by force microscopy. Phys Rev B 77(4):045402CrossRefGoogle Scholar
  174. 174.
    Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418CrossRefGoogle Scholar
  175. 175.
    Barth C, Henry CR (2003) Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett 91(19):196102CrossRefGoogle Scholar
  176. 176.
    Heyde M, Sterrer M, Rust HP, Freund HJ (2005) Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Appl Phys Lett 87(8):083104CrossRefGoogle Scholar
  177. 177.
    Heyde M, Sterrer M, Rust HP, Freund HJ (2006) Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction. Nanotechnology 17(7):S101–S106CrossRefGoogle Scholar
  178. 178.
    Torbrugge S, Ostendorf F, Reichling M (2009) Stabilization of zinc-terminated ZnO(0001) by a modified surface stoichiometry. J Phys Chem C 113(12):4909–4914CrossRefGoogle Scholar
  179. 179.
    Suzuki S, Ohminami Y, Tsutsumi T, Shoaib MM, Ichikawa M, Asakura K (2003) The first observation of an atomic scale noncontact AFM image of MoO3(010). Chem Lett 32(12):1098–1099CrossRefGoogle Scholar
  180. 180.
    Rasmussen MK, Foster AS, Hinnemann B, Canova FF, Helveg S, Meinander K, Martin NM, Knudsen J, Vlad A, Lundgren E, Stierle A, Besenbacher F, Lauritsen JV (2011) Stable cation inversion at the MgAl2O4(100) surface. Phys Rev Lett 107(3):036102CrossRefGoogle Scholar
  181. 181.
    Rasmussen MK, Meinander K, Besenbacher F, Lauritsen JV (2012) Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface. Beilstein J Nanotechnol 3:192–197CrossRefGoogle Scholar
  182. 182.
    Kishimoto S, Kageshima M, Naitoh Y, Li YJ, Sugawara Y (2008) Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surf Sci 602(13):2175–2182CrossRefGoogle Scholar
  183. 183.
    Lauritsen JV, Reichling M (2010) Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J Phys Condens Matter 22(26):263001CrossRefGoogle Scholar
  184. 184.
    Irie H, Sunada K, Hashimoto K (2004) Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72(12):807–812Google Scholar
  185. 185.
    Onishi H, Iwasawa Y (1994) Reconstruction of TiO2(110) surface – STM study with atomic-scale resolution. Surf Sci 313(1–2):L783–L789CrossRefGoogle Scholar
  186. 186.
    Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys Rev Lett 96(6):066107CrossRefGoogle Scholar
  187. 187.
    Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(26):266104CrossRefGoogle Scholar
  188. 188.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O-2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245CrossRefGoogle Scholar
  189. 189.
    Foster AS, Pakarinen OH, Airaksinen JM, Gale JD, Nieminen RM (2003) Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface. Phys Rev B 68(19):195410CrossRefGoogle Scholar
  190. 190.
    Pinto HP, Enevoldsen GH, Besenbacher F, Lauritsen JV, Foster AS (2009) The role of tip size and orientation, tip-surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO(2)(110) surface. Nanotechnology 20(26):264020CrossRefGoogle Scholar
  191. 191.
    Bammerlin M, Lüthi R, Meyer E, Baratoff A, Lü J, Guggisberg M, Gerber C, Howald L, Güntherodt HJ (1997) True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy. Probe Microsc 1:3Google Scholar
  192. 192.
    Foster AS, Barth C, Shluger AL, Reichling M (2001) Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys Rev Lett 86(11):2373–2376CrossRefGoogle Scholar
  193. 193.
    Foster AS, Barth C, Shluger AL, Nieminen RM, Reichling M (2002) Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Phys Rev B 66(23):235417CrossRefGoogle Scholar
  194. 194.
    Barth C, Reichling M (2000) Resolving ions and vacancies at step edges on insulating surfaces. Surf Sci 470(1–2):L99–L103CrossRefGoogle Scholar
  195. 195.
    Bennewitz R, Schar S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474(1–3):L197–L202CrossRefGoogle Scholar
  196. 196.
    Bennewitz R, Pfeiffer O, Schar S, Barwich V, Meyer E, Kantorovich LN (2002) Atomic corrugation in nc-AFM of alkali halides. Appl Surf Sci 188(3–4):232–237CrossRefGoogle Scholar
  197. 197.
    Fujii S, Fujihira M (2007) Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy. Nanotechnology 18(8):084011CrossRefGoogle Scholar
  198. 198.
    Giessibl FJ, Reichling M (2005) Investigating atomic details of the CaF2(111) surface with a qPlus sensor. Nanotechnology 16(3):S118–S124CrossRefGoogle Scholar
  199. 199.
    Hirth S, Ostendorf F, Reichling M (2006) Lateral manipulation of atomic size defects on the CaF2(111) surface. Nanotechnology 17(7):S148–S154CrossRefGoogle Scholar
  200. 200.
    Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2002) Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy. Appl Surf Sci 188(3–4):238–244CrossRefGoogle Scholar
  201. 201.
    Bammerlin M, Luthi R, Meyer E, Baratoff A, Lu J, Guggisberg M, Loppacher C, Gerber C, Guntherodt HJ (1998) Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl Phys Mater Sci Process 66:S293–S294CrossRefGoogle Scholar
  202. 202.
    Barth C, Henry CR (2008) Imaging Suzuki precipitates on NaCl: Mg(2+)(001) by scanning force microscopy. Phys Rev Lett 100(9):096101CrossRefGoogle Scholar
  203. 203.
    Barth C, Henry CR (2009) NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study. New J Phys 11(4):043003CrossRefGoogle Scholar
  204. 204.
    Foster AS, Barth C, Henry CR (2009) Chemical identification of ions in doped NaCl by scanning force microscopy. Phys Rev Lett 102(25):256103CrossRefGoogle Scholar
  205. 205.
    Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schar S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62(3):2074–2084CrossRefGoogle Scholar
  206. 206.
    Klust A, Ohta T, Bostwick AA, Yu QM, Ohuchi FS, Olmstead MA (2004) Atomically resolved imaging of a CaF bilayer on Si(111): subsurface atoms and the image contrast in scanning force microscopy. Phys Rev B 69(3):035405CrossRefGoogle Scholar
  207. 207.
    Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77(3):035430CrossRefGoogle Scholar
  208. 208.
    Holscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967–6970CrossRefGoogle Scholar
  209. 209.
    Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2003) Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc Natl Acad Sci U S A 100(22):12539–12542CrossRefGoogle Scholar
  210. 210.
    Kawai S, Kawakatsu H (2009) Surface-relaxation-induced giant corrugation on graphite (0001). Phys Rev B 79(11):115440CrossRefGoogle Scholar
  211. 211.
    Ashino M, Schwarz A, Behnke T, Wiesendanger R (2004) Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys Rev Lett 93(13):136101CrossRefGoogle Scholar
  212. 212.
    Loffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund HJ, Wlodarczyk R, Sierka M, Sauer J (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105(14):146104CrossRefGoogle Scholar
  213. 213.
    Lichtenstein L, Heyde M, Freund HJ (2012) Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures. J Phys Chem C 116(38):20426–20432CrossRefGoogle Scholar
  214. 214.
    Majzik Z, Tchalala MR, Svec M, Hapala P, Enriquez H, Kara A, Mayne AJ, Dujardin G, Jelinek P, Oughaddou H (2013) Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. J Phys Condens Matter 25(22):225301CrossRefGoogle Scholar
  215. 215.
    Sun ZX, Hamalainen SK, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P (2011) Topographic and electronic contrast of the graphene moire on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy. Phys Rev B 83(8):081415CrossRefGoogle Scholar
  216. 216.
    Boneschanscher MP, van der Lit J, Sun ZX, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6(11):10216–10221CrossRefGoogle Scholar
  217. 217.
    Hamalainen SK, Boneschanscher MP, Jacobse PH, Swart I, Pussi K, Moritz W, Lahtinen J, Liljeroth P, Sainio J (2013) Structure and local variations of the graphene moire on Ir(111). Phys Rev B 88(20):6CrossRefGoogle Scholar
  218. 218.
    Dedkov Y, Voloshina E (2014) Multichannel scanning probe microscopy and spectroscopy of graphene moire structures. Phys Chem Chem Phys 16(9):3894–3908CrossRefGoogle Scholar
  219. 219.
    Fukui K, Onishi H, Iwasawa Y (1997) Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem Phys Lett 280(3–4):296–301CrossRefGoogle Scholar
  220. 220.
    Rahe P, Nimmrich M, Nefedov A, Naboka M, Woll C, Kuhnle A (2009) Transition of molecule orientation during adsorption of terephthalic acid on rutile TiO2(110). J Phys Chem C 113(40):17471–17478CrossRefGoogle Scholar
  221. 221.
    Schutte J, Bechstein R, Rahe P, Rohlfing M, Kuhnle A, Langhals H (2009) Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy. Phys Rev B 79(4):045428CrossRefGoogle Scholar
  222. 222.
    Loske F, Bechstein R, Schutte J, Ostendorf F, Reichling M, Kuhnle A (2009) Growth of ordered C60 islands on TiO2(110). Nanotechnology 20(6):065606CrossRefGoogle Scholar
  223. 223.
    Fremy S, Schwarz A, Lammle K, Prosenc M, Wiesendanger R (2009) The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study. Nanotechnology 20(40):405608CrossRefGoogle Scholar
  224. 224.
    Lammle K, Trevethan T, Schwarz A, Watkins M, Shluger A, Wiesendanger R (2010) Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett 10(8):2965–2971CrossRefGoogle Scholar
  225. 225.
    Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2011) Atomic-scale mechanical properties of orientated C(60) molecules revealed by noncontact atomic force microscopy. ACS Nano 5(8):6349–6354CrossRefGoogle Scholar
  226. 226.
    Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2012) High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy. J Phys Condens Matter 24(8):084005CrossRefGoogle Scholar
  227. 227.
    Such B, Trevethan T, Glatzel T, Kawai S, Zimmerli L, Meyer E, Shluger AL, Amijs CHM, de Mendoza P, Echavarren AM (2010) Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4(6):3429–3439CrossRefGoogle Scholar
  228. 228.
    Pawlak R, Fremy S, Kawai S, Glatzel T, Fang HJ, Fendt LA, Diederich F, Meyer E (2012) Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 6(7):6318–6324CrossRefGoogle Scholar
  229. 229.
    Sasahara A, Uetsuka H, Onishi H (2001) NC-AFM topography of HCOO and CH(3)COO molecules co-adsorbed on TiO(2)(110). Appl Phys Mater Sci Process 72:S101–S103CrossRefGoogle Scholar
  230. 230.
    Gritschneder S, Iwasawa Y, Reichling M (2007) Strong adhesion of water to CeO2(111). Nanotechnology 18(4):044025CrossRefGoogle Scholar
  231. 231.
    Burke SA, Mativetsky JM, Fostner S, Grutter P (2007) C60 on alkali halides: epitaxy and morphology studied by noncontact AFM. Phys Rev B 76(3):035419CrossRefGoogle Scholar
  232. 232.
    Burke SA, Ledue JM, Topple JM, Fostner S, Grutter P (2009) Relating the functional properties of an organic semiconductor to molecular structure by nc-AFM. Adv Mater 21(20):2029–2033CrossRefGoogle Scholar
  233. 233.
    Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip-sample interaction forces probed with dynamic AFM. Phys Rev B 60(15):11051–11061CrossRefGoogle Scholar
  234. 234.
    Lantz MA, Hoffmann R, Foster AS, Baratoff A, Hug HJ, Hidber HR, Guntherodt HJ (2006) Site-specific force-distance characteristics on NaCl(001): measurements versus atomistic simulations. Phys Rev B 74(24):245426CrossRefGoogle Scholar
  235. 235.
    Hoffmann R, Barth C, Foster AS, Shluger AL, Hug HJ, Guntherodt HJ, Nieminen RM, Reichling M (2005) Measuring site-specific cluster-surface bond formation. J Am Chem Soc 127(50):17863–17866CrossRefGoogle Scholar
  236. 236.
    Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101CrossRefGoogle Scholar
  237. 237.
    Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions. Nanotechnology 20(26):264002CrossRefGoogle Scholar
  238. 238.
    Holscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81(23):4428–4430CrossRefGoogle Scholar
  239. 239.
    Ashino M, Schwarz A, Holscher H, Schwarz UD, Wiesendanger R (2005) Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 16(3):S134–S137CrossRefGoogle Scholar
  240. 240.
    Schwarz A, Holscher H, Langkat SM, Wiesendanger R (2003) Three-dimensional force field spectroscopy. AIP Conf Proc 696:68–78CrossRefGoogle Scholar
  241. 241.
    Bhushan B (2002) Introduction to tribology. Wiley, New YorkGoogle Scholar
  242. 242.
    Bhushan B (2005) Nanotribology and nanomechanics: an introduction. Springer, BerlinCrossRefGoogle Scholar
  243. 243.
    Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci U S A 99(19):12006–12010CrossRefGoogle Scholar
  244. 244.
    Atabak M, Unverdi O, Ozer HO, Oral A (2009) Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement. Appl Surf Sci 256(5):1299–1303CrossRefGoogle Scholar
  245. 245.
    Weymouth AJ, Meuer D, Mutombo P, Wutscher T, Ondracek M, Jelinek P, Giessibl FJ (2013) Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(12):126103CrossRefGoogle Scholar
  246. 246.
    Kawai S, Glatzel T, Koch S, Such B, Baratoff A, Meyer E (2010) Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys Rev B 81(8):085420CrossRefGoogle Scholar
  247. 247.
    Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319(5866):1066–1069CrossRefGoogle Scholar
  248. 248.
    Weymouth AJ, Hofmann T, Giessibl FJ (2013) Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343:1120–1122CrossRefGoogle Scholar
  249. 249.
    Welker J, Giessibl FJ (2012) Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336(6080):444–449CrossRefGoogle Scholar
  250. 250.
    Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H (2010) Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 132(19):194705CrossRefGoogle Scholar
  251. 251.
    Asakawa H, Yoshioka S, Nishimura K, Fukuma T (2012) Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6(10):9013–9020CrossRefGoogle Scholar
  252. 252.
    Sugimoto Y, Jelinek P, Pou P, Abe M, Morita S, Perez R, Custance O (2007) Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. Phys Rev Lett 98(10):106104CrossRefGoogle Scholar
  253. 253.
    Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S (2008) Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900):413–417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and UNAM − Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey

Personalised recommendations