Imaging and Characterization of Magnetic Micro- and Nanostructures Using Force Microscopy

  • Stephan Block


This chapter introduces into the principles of different force microscopic approaches that sense a magnetic probe-sample force to study magnetism of micro- and (sub)nanometer-sized objects. Although all of them are capable to characterize magnetic properties on small length scales, their applicability depends strongly on the object (e.g., nm-thin magnetic films, magnetic nanoparticles, electronic and nuclear spins) to be investigated. A comparison of their application range will be given, which allows identifying the method most suitable for the intended measurement. Finally, the discussion of each approach is complemented by an overview about current exemplary applications.


Spin Magnetic moment Magnetization Scanning probe microscopy Atomic force microscopy Magnetic force microscopy Magnetic resonance force microscopy Magnetic exchange force microscopy 


  1. 1.
    Freeman MR, Choi BC (2001) Advances in magnetic microscopy. Science 294(5546):1484–1488CrossRefGoogle Scholar
  2. 2.
    Dan Dahlberg E, Proksch R (1999) Magnetic microscopies: the new additions. J Magn Magn Mater 200(1):720–728CrossRefGoogle Scholar
  3. 3.
    Allenspach R (1994) Ultrathin films: magnetism on the microscopic scale. J Magn Magn Mater 129(2):160–185CrossRefGoogle Scholar
  4. 4.
    Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180CrossRefGoogle Scholar
  5. 5.
    Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Physical Rev Lett 49(1):57CrossRefGoogle Scholar
  6. 6.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930CrossRefGoogle Scholar
  7. 7.
    Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Surf Sci 189:1–6CrossRefGoogle Scholar
  8. 8.
    Saenz JJ, Garcia N, Grutter P, Meyer E, Heinzelmann H, Wiesendanger R, Guntherodt HJ et al (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62(10):4293–4295CrossRefGoogle Scholar
  9. 9.
    Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457CrossRefGoogle Scholar
  10. 10.
    Rugar D, Mamin HJ, Guethner P, Lambert SE, Stern JE, McFadyen I, Yogi T (1990) Magnetic force microscopy: general principles and application to longitudinal recording media. J Appl Phys 68(3):1169–1183CrossRefGoogle Scholar
  11. 11.
    Wiesendanger R, Güntherodt HJ, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247CrossRefGoogle Scholar
  12. 12.
    Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang CH (1992) Near-field magneto-optics and high density data storage. Appl Phys Lett 61(2):142–144CrossRefGoogle Scholar
  13. 13.
    Silva TJ, Schultz S, Weller D (1994) Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials. Appl Phys Lett 65(6):658–660CrossRefGoogle Scholar
  14. 14.
    Chapman JN, McFadyen IR, McVitie S (1990) Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. Magn, IEEE Trans 26(5):1506–1511CrossRefGoogle Scholar
  15. 15.
    Kirk KJ, Chapman JN, Wilkinson CDW (1999) Lorentz microscopy of small magnetic structures. J Appl Phys 85(8):5237–5242CrossRefGoogle Scholar
  16. 16.
    Lichte H (1986) Electron holography approaching atomic resolution. Ultramicroscopy 20(3):293–304CrossRefGoogle Scholar
  17. 17.
    Tonomura A (1987) Applications of electron holography. Rev Mod Phys 59(3):639CrossRefGoogle Scholar
  18. 18.
    Kirtley JR, Wikswo JP Jr (1999) Scanning SQUID microscopy. Annu Rev mater Sci 29(1):117–148CrossRefGoogle Scholar
  19. 19.
    Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Chang TY et al (1992) Scanning hall probe microscopy. Appl Phys Lett 61(16):1974–1976CrossRefGoogle Scholar
  20. 20.
    Oral A, Bending SJ, Henini M (1996) Real-time scanning hall probe microscopy. Appl Phys Lett 69(9):1324–1326CrossRefGoogle Scholar
  21. 21.
    Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Wrachtrup J et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455(7213):648–651CrossRefGoogle Scholar
  22. 22.
    Kolkowitz S, Unterreithmeier QP, Bennett SD, Lukin MD (2012) Sensing distant nuclear spins with a single electron spin. Phys Rev Lett 109(13):137601CrossRefGoogle Scholar
  23. 23.
    Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD, Walsworth RL, Yacoby A (2013) Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat Phys 9:215–219CrossRefGoogle Scholar
  24. 24.
    Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523CrossRefGoogle Scholar
  25. 25.
    Wiebe J, Zhou L, Wiesendanger R (2011) Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy. J Phys D Appl Phys 44(46):464009CrossRefGoogle Scholar
  26. 26.
    Wiesendanger R (2011) Single-atom magnetometry. Curr Opin Solid State Mater Sci 15(1):1–7CrossRefGoogle Scholar
  27. 27.
    Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60(6):1438–1444CrossRefGoogle Scholar
  28. 28.
    Hartmann U (1991) van der Waals interactions between sharp probes and flat sample surfaces. Phys Rev B 43(3):2404CrossRefGoogle Scholar
  29. 29.
    Argento C, French RH (1996) Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J Appl Phys 80(11):6081–6090CrossRefGoogle Scholar
  30. 30.
    Erlandsson R, Hadziioannou G, Mate CM, McClelland GM, Chiang S (1988) Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J Chem Phys 89:5190CrossRefGoogle Scholar
  31. 31.
    Mate CM, McClelland GM, Erlandsson R, Chiang S (1993) Atomic-scale friction of a tungsten tip on a graphite surface. In: Scanning tunneling microscopy. Springer Netherlands, pp 226–229. ISBN: 978-0-7923-2065-4Google Scholar
  32. 32.
    Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E (2013) Colloquium: modeling friction: from nanoscale to mesoscale. Rev Mod Phys 85:529–552CrossRefGoogle Scholar
  33. 33.
    Borkovec M, Papastavrou G (2008) Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Curr Opin Colloid Interface Sci 13(6):429–437CrossRefGoogle Scholar
  34. 34.
    Block S, Helm CA (2007) Measurement of long-ranged steric forces between polyelectrolyte layers physisorbed from 1 M NaCl. Phys Rev E 76(3):030801CrossRefGoogle Scholar
  35. 35.
    Block S, Helm CA (2008) Conformation of poly (styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales. J Phys Chem B 112(31):9318–9327CrossRefGoogle Scholar
  36. 36.
    Drechsler A, Synytska A, Uhlmann P, Elmahdy MM, Stamm M, Kremer F (2009) Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration. Langmuir 26(9):6400–6410CrossRefGoogle Scholar
  37. 37.
    Quate CF (1994) The AFM as a tool for surface imaging. Surf Sci 299:980–995CrossRefGoogle Scholar
  38. 38.
    Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy: the lab on a tip. Springer, BerlinCrossRefGoogle Scholar
  39. 39.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152CrossRefGoogle Scholar
  40. 40.
    Bhushan B (ed) (2010) Springer handbook of nanotechnology. Springer-Verlag Berlin Heidelberg, ISBN: 978-3-642-02524-2Google Scholar
  41. 41.
    Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501CrossRefGoogle Scholar
  42. 42.
    Senden TJ (2001) Force microscopy and surface interactions. Curr Opin Colloid Interface Sci 6(2):95–101CrossRefGoogle Scholar
  43. 43.
    Stokey WF (1989) Shock and vibration handbook. McGraw-Hill, New York, pp 7.1–7.44Google Scholar
  44. 44.
    Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Oxford, PergamonGoogle Scholar
  45. 45.
    Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76CrossRefGoogle Scholar
  46. 46.
    Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1CrossRefGoogle Scholar
  47. 47.
    Salapaka MV, Bergh HS, Lai J, Majumdar A, McFarland E (1997) Multi-mode noise analysis of cantilevers for scanning probe microscopy. J Appl Phys 81(6):2480–2487CrossRefGoogle Scholar
  48. 48.
    Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75(6):1988–1996CrossRefGoogle Scholar
  49. 49.
    Chester W (1979) Oscillations. In: Mechanics. George Allen & Unwin London, pp 136–173Google Scholar
  50. 50.
    Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668CrossRefGoogle Scholar
  51. 51.
    Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010CrossRefGoogle Scholar
  52. 52.
    Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Güntherodt HJ et al (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151CrossRefGoogle Scholar
  53. 53.
    Giessibl FJ (2001) A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125CrossRefGoogle Scholar
  54. 54.
    Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803CrossRefGoogle Scholar
  55. 55.
    Sader JE, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y, Jarvis SP (2005) Quantitative force measurements using frequency modulation atomic force microscopy – theoretical foundations. Nanotechnology 16(3):S94CrossRefGoogle Scholar
  56. 56.
    Welker J, Illek E, Giessibl FJ (2012) Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy. Beilstein J Nanotechnol 3(1):238–248CrossRefGoogle Scholar
  57. 57.
    Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64(2):403–405CrossRefGoogle Scholar
  58. 58.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  59. 59.
    Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66(7):3789–3798CrossRefGoogle Scholar
  60. 60.
    Sader JE, Chon JW, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967CrossRefGoogle Scholar
  61. 61.
    Chon JW, Mulvaney P, Sader JE (2000) Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J Appl Phys 87(8):3978–3988CrossRefGoogle Scholar
  62. 62.
    Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Tendler SJB et al (2003) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14(1):1CrossRefGoogle Scholar
  63. 63.
    Cook SM, Schäffer TE, Chynoweth KM, Wigton M, Simmonds RW, Lang KM (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17(9):2135CrossRefGoogle Scholar
  64. 64.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Elings V et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740CrossRefGoogle Scholar
  65. 65.
    Garcia R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60(7):4961CrossRefGoogle Scholar
  66. 66.
    Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force mapping and profiling on a sub 100 Å scale. J Appl Phys 61(10):4723–4729CrossRefGoogle Scholar
  67. 67.
    Anselmetti D, Luthi R, Meyer E, Richmond T, Dreier M, Frommer JE, Guntherodt HJ (1994) Attractive-mode imaging of biological materials with dynamic force microscopy. Nanotechnology 5(2):87CrossRefGoogle Scholar
  68. 68.
    Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6):197–301CrossRefGoogle Scholar
  69. 69.
    Higgins MJ, Riener CK, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems. Nanotechnology 16(3):S85CrossRefGoogle Scholar
  70. 70.
    Grütter P, Mamin HJ, Rugar D (1992) Magnetic Force Microscopy (MFM). In: Wiesendanger R, Güntherodt H-J (eds) Scanning tunneling microscopy II. Springer series in surface sciences 28. Springer, Berlin, pp 151–207Google Scholar
  71. 71.
    Giessibl FJ, Pielmeier F, Eguchi T, An T, Hasegawa Y (2011) Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys Rev B 84(12):125409CrossRefGoogle Scholar
  72. 72.
    Yuan CW, Batalla E, Zacher M, De Lozanne AL, Kirk MD, Tortonese M (1994) Low temperature magnetic force microscope utilizing a piezoresistive cantilever. Appl Phys Lett 65(10):1308–1310CrossRefGoogle Scholar
  73. 73.
    Giessibl FJ, Trafas BM (1994) Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum. Rev Sci Instrum 65(6):1923–1929CrossRefGoogle Scholar
  74. 74.
    Arlett JL, Maloney JR, Gudlewski B, Muluneh M, Roukes ML (2006) Self-sensing micro-and nanocantilevers with attonewton-scale force resolution. Nano Lett 6(5):1000–1006CrossRefGoogle Scholar
  75. 75.
    Alexander SLOJVPKM, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Gurley J et al (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J Appl Phys 65(1):164–167CrossRefGoogle Scholar
  76. 76.
    Putman CA, De Grooth BG, Van Hulst NF, Greve J (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J Appl Phys 72(1):6–12CrossRefGoogle Scholar
  77. 77.
    Colchero J, Cuenca M, Martinez JF, Abad J, García BP, Palacios-Lidón E, Abellán J (2011) Thermal frequency noise in dynamic scanning force microscopy. J Appl Phys 109(2):024310–024310CrossRefGoogle Scholar
  78. 78.
    Erlandsson R, McClelland GM, Mate CM, Chiang S (1988) Atomic force microscopy using optical interferometry. J Vacuum Sci Technol A Vacuum Surf Films 6(2):266–270CrossRefGoogle Scholar
  79. 79.
    Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59(11):2337–2340CrossRefGoogle Scholar
  80. 80.
    Hoogenboom BW, Frederix PLTM, Yang JL, Martin S, Pellmont Y, Steinacher M, Hug HJ et al (2005) A Fabry–Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86(7):074101–074101CrossRefGoogle Scholar
  81. 81.
    Poggio M, Degen CL (2010) Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21(34):342001CrossRefGoogle Scholar
  82. 82.
    Sidles JA, Garbini JL, Drobny GP (1992) The theory of oscillator coupled magnetic resonance with potential applications to molecular imaging. Rev Sci Instrum 63(8):3881–3899CrossRefGoogle Scholar
  83. 83.
    Sidles JA, Rugar D (1993) Signal-to-noise ratios in inductive and mechanical detection of magnetic resonance. Phys Rev Lett 70(22):3506CrossRefGoogle Scholar
  84. 84.
    Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525CrossRefGoogle Scholar
  85. 85.
    Porthun S, Abelmann L, Lodder C (1998) Magnetic force microscopy of thin film media for high density magnetic recording. J Magn Magn Mater 182(1):238–273CrossRefGoogle Scholar
  86. 86.
    Hartmann U (1999) Magnetic force microscopy. Ann Rev Mater Sci 29(1):53–87CrossRefGoogle Scholar
  87. 87.
    Koblischka MR, Hartmann U (2003) Recent advances in magnetic force microscopy. Ultramicroscopy 97(1):103–112CrossRefGoogle Scholar
  88. 88.
    Zhu X, Grütter P (2004) Imaging, manipulation, and spectroscopic measurements of nanomagnets by magnetic force microscopy. MRS Bull 29(07):457–462CrossRefGoogle Scholar
  89. 89.
    Schwarz A, Wiesendanger R (2008) Magnetic sensitive force microscopy. Nano Today 3(1):28–39CrossRefGoogle Scholar
  90. 90.
    Agarwal G (2009) Characterization of magnetic nanoparticles using magnetic force microscopy. Nanotechnologies for the life sciences. In: Kumar CSSR (ed) Nanotechnologies for the life sciences, vol 4, Magnetic Nanomaterials. Wiley, WeinheimGoogle Scholar
  91. 91.
    Wadas A, Grütter P (1989) Theoretical approach to magnetic force microscopy. Phys Rev B 39(16):12013CrossRefGoogle Scholar
  92. 92.
    Hartmann U (1989) The point dipole approximation in magnetic force microscopy. Phys Lett A 137(9):475–478CrossRefGoogle Scholar
  93. 93.
    Hartmann U (1990) Theory of magnetic force microscopy. J Vacuum Sci Technol A Vacuum Surfaces Films 8(1):411–415CrossRefGoogle Scholar
  94. 94.
    Schönenberger C, Alvarado SF (1990) Understanding magnetic force microscopy. Zeitschrift für Physik B Condensed Matter 80(3):373–383CrossRefGoogle Scholar
  95. 95.
    Wright CD, Hill EW (1995) Reciprocity in magnetic force microscopy. Appl Phys Lett 67(3):433–435CrossRefGoogle Scholar
  96. 96.
    Hubert A, Rave W, Tomlinson SL (1997) Imaging magnetic charges with magnetic force microscopy. Phys Status Solidi B Basic Res 204:817–828CrossRefGoogle Scholar
  97. 97.
    Hug HJ, Stiefel B, Van Schendel PJA, Moser A, Hofer R, Martin S, OHandley RC et al (1998) Quantitative magnetic force microscopy on perpendicularly magnetized samples. J Appl Phys 83(11):5609–5620CrossRefGoogle Scholar
  98. 98.
    Häberle T, Haering F, Pfeifer H, Han L, Kuerbanjiang B, Wiedwald U, Koslowski B et al (2012) Towards quantitative magnetic force microscopy: theory and experiment. New J Phys 14(4):043044CrossRefGoogle Scholar
  99. 99.
    Babcock KL, Elings VB, Shi J, Awschalom DD, Dugas M (1996) Field‐dependence of microscopic probes in magnetic force microscopy. Appl Phys Lett 69(5):705–707CrossRefGoogle Scholar
  100. 100.
    Kong L, Chou SY (1997) Quantification of magnetic force microscopy using a micronscale current ring. Appl Phys Lett 70(15):2043–2045CrossRefGoogle Scholar
  101. 101.
    Goddenhenrich T, Lemke H, Muck M, Hartmann U, Heiden C (1990) Probe calibration in magnetic force microscopy. Appl Phys Lett 57(24):2612–2614CrossRefGoogle Scholar
  102. 102.
    Lohau J, Kirsch S, Carl A, Dumpich G, Wassermann EF (1999) Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J Appl Phys 86(6):3410–3417CrossRefGoogle Scholar
  103. 103.
    Van Schendel PJA, Hug HJ, Stiefel B, Martin S, Guntherodt HJ (2000) A method for the calibration of magnetic force microscopy tips. J Appl Phys 88(1):435–445CrossRefGoogle Scholar
  104. 104.
    Kebe T, Carl A (2004) Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J Appl Phys 95(3):775–792CrossRefGoogle Scholar
  105. 105.
    Jaafar M, Asenjo A, Vazquez M (2008) Calibration of coercive and stray fields of commercial magnetic force microscope probes. Nanotechnol IEEE Trans 7(3):245–250CrossRefGoogle Scholar
  106. 106.
    Ruhrig M, Porthun S, Lodder JC, McVitie S, Heyderman LJ, Johnston AB, Chapman JN (1996) Electron beam fabrication and characterization of high‐resolution magnetic force microscopy tips. J Appl Phys 79(6):2913–2919CrossRefGoogle Scholar
  107. 107.
    Leinenbach P, Memmert U, Schelten J, Hartmann U (1999) Fabrication and characterization of advanced probes for magnetic force microscopy. Appl Surf Sci 144:492–496CrossRefGoogle Scholar
  108. 108.
    Arie T, Nishijima H, Akita S, Nakayama Y (2000) Carbon-nanotube probe equipped magnetic force microscope. J Vacuum Sci Technol B Microelectron Nanometer Struct 18(1):104–106CrossRefGoogle Scholar
  109. 109.
    Ono T, Esashi M (2003) Magnetic force and optical force sensing with ultrathin silicon resonator. Rev Sci Instrum 74(12):5141–5146CrossRefGoogle Scholar
  110. 110.
    Gao L, Yue LP, Yokota T, Skomski R, Liou SH, Takahoshi H, Ishio S et al (2004) Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. Magn IEEE Trans 40(4):2194–2196CrossRefGoogle Scholar
  111. 111.
    Kuramochi H, Uzumaki T, Yasutake M, Tanaka A, Akinaga H, Yokoyama H (2005) A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16(1):24CrossRefGoogle Scholar
  112. 112.
    Wolny F, Weissker U, Muhl T, Leonhardt A, Menzel S, Winkler A, Buchner B (2008) Iron-filled carbon nanotubes as probes for magnetic force microscopy. J Appl Phys 104(6):064908–064908CrossRefGoogle Scholar
  113. 113.
    Wolny F, Mühl T, Weissker U, Lipert K, Schumann J, Leonhardt A, Büchner B (2010) Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21(43):435501CrossRefGoogle Scholar
  114. 114.
    Foss S, Proksch R, Dahlberg ED, Moskowitz B, Walsh B (1996) Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscope. Appl Phys Lett 69(22):3426–3428CrossRefGoogle Scholar
  115. 115.
    Pokhil TG, Moskowitz BM (1997) Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. J Geophys Res 102(B10):22681–22CrossRefGoogle Scholar
  116. 116.
    McVitie S, White GS, Scott J, Warin P, Chapman JN (2001) Quantitative imaging of magnetic domain walls in thin films using Lorentz and magnetic force microscopies. J Appl Phys 90(10):5220–5227CrossRefGoogle Scholar
  117. 117.
    Asenjo A, García D, García JM, Prados C, Vázquez M (2000) Magnetic force microscopy study of dense stripe domains in Fe-B/Co-Si-B multilayers and the evolution under an external applied field. Phys Rev B 62(10):6538CrossRefGoogle Scholar
  118. 118.
    Donzelli O, Palmeri D, Musa L, Casoli F, Albertini F, Pareti L, Turilli G (2003) Perpendicular magnetic anisotropy and stripe domains in ultrathin Co/Au sputtered multilayers. J Appl Phys 93(12):9908–9912CrossRefGoogle Scholar
  119. 119.
    Ehresmann A, Krug I, Kronenberger A, Ehlers A, Engel D (2004) In-plane magnetic pattern separation in NiFe/NiO and Co/NiO exchange biased bilayers investigated by magnetic force microscopy. J Magn Magn Mater 280(2):369–376CrossRefGoogle Scholar
  120. 120.
    Gottwald M, Hehn M, Lacour D, Hauet T, Montaigne F, Mangin S, Berger A et al (2012) Asymmetric magnetization reversal in dipolarly coupled spin valve structures with perpendicular magnetic anisotropy. Phys Rev B 85(6):064403CrossRefGoogle Scholar
  121. 121.
    Gibson GA, Schultz S (1993) Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles. J Appl Phys 73(9):4516–4521CrossRefGoogle Scholar
  122. 122.
    Kleiber M, Kümmerlen F, Löhndorf M, Wadas A, Weiss D, Wiesendanger R (1998) Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip. Phys Rev B 58(9):5563CrossRefGoogle Scholar
  123. 123.
    Lohau J, Carl A, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of a single-domain Co/Pt dot measured with a calibrated magnetic force microscope tip. Appl Phys Lett 78(14):2020–2022CrossRefGoogle Scholar
  124. 124.
    Raabe J, Pulwey R, Sattler R, Schweinbock T, Zweck J, Weiss D (2000) Magnetization pattern of ferromagnetic nanodisks. J Appl Phys 88(7):4437–4439CrossRefGoogle Scholar
  125. 125.
    Pulwey R et al (2001) Switching behavior of vortex structures in nanodisks. Magn IEEE Trans 37.4:2076–2078CrossRefGoogle Scholar
  126. 126.
    Garcıa JM, Thiaville A, Miltat J (2002) MFM imaging of nanowires and elongated patterned elements. J Magn Magn Mater 249(1):163–169CrossRefGoogle Scholar
  127. 127.
    Pulwey R, Zolfl M, Bayreuther G, Weiss D (2002) Magnetic domains in epitaxial nanomagnets with uniaxial or fourfold crystal anisotropy. J Appl Phys 91(10):7995–7997CrossRefGoogle Scholar
  128. 128.
    Rahm M, Schneider M, Biberger J, Pulwey R, Zweck J, Weiss D, Umansky V (2003) Vortex nucleation in submicrometer ferromagnetic disks. Appl Phys Lett 82(23):4110–4112CrossRefGoogle Scholar
  129. 129.
    Rahm M, Biberger J, Umansky V, Weiss D (2003) Vortex pinning at individual defects in magnetic nanodisks. J Appl Phys 93(10):7429–7431CrossRefGoogle Scholar
  130. 130.
    Garcia-Martin JM, Thiaville A, Miltat J, Okuno T, Vila L, Piraux L (2004) Imaging magnetic vortices by magnetic force microscopy: experiments and modelling. J Phys D Appl Phys 37(7):965CrossRefGoogle Scholar
  131. 131.
    Chang J, Mironov VL, Gribkov BA, Fraerman AA, Gusev SA, Vdovichev SN (2006) Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe. J Appl Phys 100(10):104304–104304CrossRefGoogle Scholar
  132. 132.
    Takagaki Y, Jenichen B, Herrmann C, Wiebicke E, Däweritz L, Ploog KH (2006) First-order phase transition in MnAs disks on GaAs (001). Phys Rev B 73(12):125324CrossRefGoogle Scholar
  133. 133.
    Jenichen B, Kaganer VM, Takagaki Y, Herrmann C, Ploog KH, Dudzik E, Feyerherm R (2007) First order phase transition in MnAs nanodisks. Phys Status Solidi (a) 204(8):2772–2777CrossRefGoogle Scholar
  134. 134.
    Hanson M, Bručas R, Kazakova O (2007) Effects of size and interactions on the magnetic behaviour of elliptical (001) Fe nanoparticles. J Magn Magnetic Mater 316(2):181–183CrossRefGoogle Scholar
  135. 135.
    Zhu X, Grutter P, Metlushko V, Hao Y, Castano FJ, Ross CA, Smith HI et al (2003) Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays by magnetic force microscopy. J Appl Phys 93(10):8540–8542CrossRefGoogle Scholar
  136. 136.
    Roy PE, Lee JH, Trypiniotis T, Anderson D, Jones GAC, Tse D, Barnes CHW (2009) Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys Rev B 79(6):060407CrossRefGoogle Scholar
  137. 137.
    Weissker U, Loffler M, Wolny F, Lutz MU, Scheerbaum N, Klingeler R, Buchner B et al (2009) Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J Appl Phys 106(5):054909–054909CrossRefGoogle Scholar
  138. 138.
    Mironov VL, Ermolaeva OL, Gusev SA, Klimov AY, Rogov VV, Gribkov BA, Petrashov VT et al (2010) Antivortex state in crosslike nanomagnets. Phys Rev B 81(9):094436CrossRefGoogle Scholar
  139. 139.
    Mironov VL, Ermolaeva OL, Skorohodov EV, Klimov AY (2012) Field-controlled domain wall pinning-depinning effects in a ferromagnetic nanowire-nanoislands system. Phys Rev B 85(14):144418CrossRefGoogle Scholar
  140. 140.
    Suzuki H, Tanaka T, Sasaki T, Nakamura N, Matsunaga T, Mashiko S (1998) High-resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn J Appl Phys 37:L1343–L1345CrossRefGoogle Scholar
  141. 141.
    Albrecht M, Janke V, Sievers S, Siegner U, Schüler D, Heyen U (2005) Scanning force microspy study of biogenic nanoparticles for medical applications. J Magn Magn Mater 290:269–271CrossRefGoogle Scholar
  142. 142.
    Krishna H, Miller C, Longstreth-Spoor L, Nussinov Z, Gangopadhyay AK, Kalyanaraman R (2008) Unusual size-dependent magnetization in near hemispherical Co nanomagnets on SiO2 from fast pulsed laser processing. J Appl Phys 103(7):073902–073902CrossRefGoogle Scholar
  143. 143.
    Schreiber S, Savla M, Pelekhov DV, Iscru DF, Selcu C, Hammel PC, Agarwal G (2008) Magnetic force microscopy of superparamagnetic nanoparticles. Small 4(2):270–278CrossRefGoogle Scholar
  144. 144.
    Moskalenko AV, Yarova PL, Gordeev SN, Smirnov SV (2010) Single protein molecule mapping with magnetic atomic force microscopy. Biophys J 98(3):478–487CrossRefGoogle Scholar
  145. 145.
    Block S, Glöckl G, Weitschies W, Helm CA (2011) Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope. Nano Lett 11(9):3587–3592CrossRefGoogle Scholar
  146. 146.
    Dietz C, Herruzo ET, Lozano JR, Garcia R (2011) Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22(12):125708CrossRefGoogle Scholar
  147. 147.
    Sievers S, Braun KF, Eberbeck D, Gustafsson S, Olsson E, Schumacher HW, Siegner U (2012) Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy. Small 8(17):2675–2679CrossRefGoogle Scholar
  148. 148.
    Yuan CW, Zheng Z, De Lozanne AL, Tortonese M, Rudman DA, Eckstein JN (1996) Vortex images in thin films of YBa 2 Cu 3 O 7-x and Bi 2 Sr 2 Ca 1 Cu 2 O 8+ x obtained by low‐temperature magnetic force microscopy. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1210–1213CrossRefGoogle Scholar
  149. 149.
    Auslaender OM, Luan L, Straver EW, Hoffman JE, Koshnick NC, Zeldov E, Moler KA et al (2008) Mechanics of individual isolated vortices in a cuprate superconductor. Nat Phys 5(1):35–39CrossRefGoogle Scholar
  150. 150.
    Schwarz A, Liebmann M, Pi UH, Wiesendanger R (2010) Real space visualization of thermal fluctuations in a triangular flux-line lattice. New J Phys 12(3):033022CrossRefGoogle Scholar
  151. 151.
    Brown JWF (1962) Magnetostatic principles in ferromagnetism, vol 112. North-Holland Publ. Co, AmsterdamGoogle Scholar
  152. 152.
    Wadas A, Guntherodt HJ (1990) The topography effect on magnetic images in magnetic force microscopy. J Appl Phys 68(9):4767–4771CrossRefGoogle Scholar
  153. 153.
    Giessibl FJ (2006) Higher-harmonic atomic force microscopy. Surf Interface Anal 38(12–13):1696–1701CrossRefGoogle Scholar
  154. 154.
    Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226CrossRefGoogle Scholar
  155. 155.
    Schneider M, Müller-Pfeiffer S, Zinn W (1996) Magnetic force microscopy of domain wall fine structures in iron films. J Appl Phys 79(11):8578–8583CrossRefGoogle Scholar
  156. 156.
    Fannin PC, Scaife BKP, Charles SW (1993) Relaxation and resonance in ferrofluids. J Magn Magn Mater 122(1):159–163CrossRefGoogle Scholar
  157. 157.
    Kötitz R, Fannin PC, Trahms L (1995) Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater 149(1):42–46CrossRefGoogle Scholar
  158. 158.
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742CrossRefGoogle Scholar
  159. 159.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Cheon J et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733CrossRefGoogle Scholar
  160. 160.
    Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Cheon J et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391CrossRefGoogle Scholar
  161. 161.
    Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Hyeon T et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441CrossRefGoogle Scholar
  162. 162.
    Hoffmann B, Houbertz R, Hartmann U (1998) Eddy current microscopy. Appl Phys A Mater Sci Process 66:S409–S413CrossRefGoogle Scholar
  163. 163.
    Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, Yannoni CS (1995) Magnetic resonance force microscopy. Rev Mod Phys 67(1):249CrossRefGoogle Scholar
  164. 164.
    Hammel PC, Pelekhov DV, Wigen PE, Gosnell TR, Midzor MM, Roukes ML (2003) The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging. Proc IEEE 91(5):789–798CrossRefGoogle Scholar
  165. 165.
    Suter A (2004) The magnetic resonance force microscope. Prog Nucl Magn Reson Spectrosc 45(3):239–274CrossRefGoogle Scholar
  166. 166.
    Borgonovi F, Gorshkov VN, Tsifrinovich VII (2006) Magnetic resonance force microscopy and a single-spin measurement. World Scientific, HackensackGoogle Scholar
  167. 167.
    Wigen PE, Roukes ML, Hammel PC (2006) Ferromagnetic resonance force microscopy. In: Spin dynamics in confined magnetic structures III. Springer, Berlin/Heidelberg, pp 105–136CrossRefGoogle Scholar
  168. 168.
    Hammel PC, Pelekhov DV (2007) The magnetic force microscope. In: Kronmuller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials, vol 5, Spintronics and magnetoelectronics. Wiley, ChichesterGoogle Scholar
  169. 169.
    Kuehn S, Hickman SA, Marohn JA (2008) Advances in mechanical detection of magnetic resonance. J Chem Phys 128:052208CrossRefGoogle Scholar
  170. 170.
    Zhang Z, Roukes ML, Hammel PC (1996) Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy. J Appl Phys 80(12):6931–6938CrossRefGoogle Scholar
  171. 171.
    Dougherty WM, Bruland KJ, Chao SH, Garbini JL, Jensen SE, Sidles JA (2000) The Bloch equations in high-gradient magnetic resonance force microscopy: theory and experiment. J Magn Reson 143(1):106–119CrossRefGoogle Scholar
  172. 172.
    Suter A, Pelekhov DV, Roukes ML, Hammel PC (2002) Probe–sample coupling in the magnetic resonance force microscope. J Magn Reson 154(2):210–227CrossRefGoogle Scholar
  173. 173.
    Charbois V, Naletov VV, Youssef JB, Klein O (2002) Influence of the magnetic tip in ferromagnetic resonance force microscopy. Appl Phys Lett 80(25):4795–4797CrossRefGoogle Scholar
  174. 174.
    Mozyrsky D, Martin I, Pelekhov D, Hammel PC (2003) Theory of spin relaxation in magnetic resonance force microscopy. Appl Phys Lett 82(8):1278–1280CrossRefGoogle Scholar
  175. 175.
    Wago K, Zuger O, Kendrick R, Yannoni CS, Rugar D (1996) Low-temperature magnetic resonance force detection. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1197–1201CrossRefGoogle Scholar
  176. 176.
    Garbini JL, Bruland KJ, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. I. Controller design. J Appl Phys 80(4):1951–1958CrossRefGoogle Scholar
  177. 177.
    Bruland KJ, Garbini JL, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. II. Magnetic coupling implementation. J Appl Phys 80(4):1959–1964CrossRefGoogle Scholar
  178. 178.
    Zhang Z, Hammel PC, Moore GJ (1996) Application of a novel rf coil design to the magnetic resonance force microscope. Rev Sci Instrum 67(9):3307–3309CrossRefGoogle Scholar
  179. 179.
    Dougherty WM, Bruland KJ, Garbini JL, Sidles JA (1996) Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator. Meas Sci Technol 7(12):1733CrossRefGoogle Scholar
  180. 180.
    Zhang Z, Hammel PC (1998) Magnetic resonance force microscopy with a ferromagnetic tip mounted on the force detector. Solid State Nucl Magn Reson 11(1):65–72CrossRefGoogle Scholar
  181. 181.
    Nazaretski E, Graham KS, Thompson JD, Wright JA, Pelekhov DV, Hammel PC, Movshovich R (2009) Design of a variable temperature scanning force microscope. Rev Sci Instrum 80(8):083704–083704CrossRefGoogle Scholar
  182. 182.
    Streckeisen P, Rast S, Wattinger C, Meyer E, Vettiger P, Gerber C, Güntherodt HJ (1998) Instrumental aspects of magnetic resonance force microscopy. Appl Phys A Mater Sci Process 66:S341–S344CrossRefGoogle Scholar
  183. 183.
    Rugar D, Stipe BC, Mamin HJ, Yannoni CS, Stowe TD, Yasumura KY, Kenny TW (2001) Adventures in attonewton force detection. Appl Phys A 72(1):S3–S10CrossRefGoogle Scholar
  184. 184.
    Jenkins NE, DeFlores LP, Allen J, Ng TN, Garner SR, Kuehn S, Marohn JA et al (2004) Batch fabrication and characterization of ultrasensitive cantilevers with submicron magnetic tips. J Vacuum Sci Technol B Microelectron Nanometer Struct 22(3):909–915CrossRefGoogle Scholar
  185. 185.
    Barbic M, Scherer A (2005) Composite nanowire-based probes for magnetic resonance force microscopy. Nano Lett 5(1):187–190CrossRefGoogle Scholar
  186. 186.
    Mamin HJ, Rettner CT, Sherwood MH, Gao L, Rugar D (2012) High field-gradient dysprosium tips for magnetic resonance force microscopy. Appl Phys Lett 100(1):013102–013102CrossRefGoogle Scholar
  187. 187.
    Longenecker JG, Mamin HJ, Senko AW, Chen L, Rettner CT, Rugar D, Marohn JA (2012) High-gradient nanomagnets on cantilevers for sensitive detection of nuclear magnetic resonance. ACS Nano 6(11):9637–9645CrossRefGoogle Scholar
  188. 188.
    Rugar D, Yannoni CS, Sidles JA (1992) Mechanical detection of magnetic resonance. Nature 360(6404):563–566CrossRefGoogle Scholar
  189. 189.
    Wago K, Zuger O, Wegener J, Kendrick R, Yannoni CS, Rugar D (1997) Magnetic resonance force detection and spectroscopy of electron spins in phosphorus-doped silicon. Rev Sci Instrum 68(4):1823–1826, ESR-Spectr mit HyperfeinsplittingCrossRefGoogle Scholar
  190. 190.
    Wago K, Botkin D, Yannoni CS, Rugar D (1998) Force-detected electron-spin resonance: adiabatic inversion, nutation, and spin echo. Phys Rev B 57(2):1108CrossRefGoogle Scholar
  191. 191.
    Züger O, Rugar D (1993) First images from a magnetic resonance force microscope. Appl Phys Lett 63(18):2496–2498CrossRefGoogle Scholar
  192. 192.
    Züger O, Rugar D (1994) Magnetic resonance detection and imaging using force microscope techniques. J Appl Phys 75(10):6211–6216CrossRefGoogle Scholar
  193. 193.
    Hammel PC, Zhang Z, Moore GJ, Roukes ML (1995) Sub-surface imaging with the magnetic resonance force microscope. J Low Temp Phys 101(1–2):59–69CrossRefGoogle Scholar
  194. 194.
    Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Single spin detection by magnetic resonance force microscopy. Nature 430(6997):329–332CrossRefGoogle Scholar
  195. 195.
    Rugar D, Züger O, Hoen S, Yannoni CS, Vieth HM, Kendrick RD (1994) Force detection of nuclear magnetic resonance. Science 264(5165):1560–1563CrossRefGoogle Scholar
  196. 196.
    Züger O, Hoen ST, Yannoni CS, Rugar D (1996) Three-dimensional imaging with a nuclear magnetic resonance force microscope. J Appl Phys 79(4):1881–1884CrossRefGoogle Scholar
  197. 197.
    Mamin HJ, Poggio M, Degen CL, Rugar D (2007) Nuclear magnetic resonance imaging with 90-nm resolution. Nat Nanotechnol 2(5):301–306CrossRefGoogle Scholar
  198. 198.
    Eberhardt KW, Degen CL, Hunkeler A, Meier BH (2008) One- and Two-Dimensional NMR spectroscopy with a magnetic-resonance force microscope. Angew Chem Int Ed 47(46):8961–8963CrossRefGoogle Scholar
  199. 199.
    Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. Proc Natl Acad Sci 106(5):1313–1317CrossRefGoogle Scholar
  200. 200.
    Mamin HJ, Oosterkamp TH, Poggio M, Degen CL, Rettner CT, Rugar D (2009) Isotope-selective detection and imaging of organic nanolayers. Nano Lett 9(8):3020–3024CrossRefGoogle Scholar
  201. 201.
    Joss R, Tomka IT, Eberhardt KW, van Beek JD, Meier BH (2011) Chemical-shift imaging in micro-and nano-MRI. Phys Rev B 84(10):104435CrossRefGoogle Scholar
  202. 202.
    Zhang Z, Hammel PC, Wigen PE (1996) Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl Phys Lett 68(14):2005–2007CrossRefGoogle Scholar
  203. 203.
    Zhang Z, Hammel PC, Midzor M, Roukes ML, Childress JR (1998) Ferromagnetic resonance force microscopy on microscopic cobalt single layer films. Appl Phys Lett 73(14):2036–2038CrossRefGoogle Scholar
  204. 204.
    Wago K, Botkin D, Yannoni CS, Rugar D (1998) Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope. Appl Phys Lett 72(21):2757–2759CrossRefGoogle Scholar
  205. 205.
    Mewes T, Kim J, Pelekhov DV, Kakazei GN, Wigen PE, Batra S, Hammel PC (2006) Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots. Phys Rev B 74(14):144424CrossRefGoogle Scholar
  206. 206.
    Urban R, Putilin A, Wigen PE, Liou SH, Cross MC, Hammel PC, Roukes ML (2006) Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy. Phys Rev B 73(21):212410CrossRefGoogle Scholar
  207. 207.
    Lee I, Obukhov Y, Xiang G, Hauser A, Yang F, Banerjee P, Hammel PC et al (2010) Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466(7308):845–848CrossRefGoogle Scholar
  208. 208.
    Lee I, Obukhov Y, Hauser AJ, Yang FY, Pelekhov DV, Hammel PC (2011) Nanoscale confined mode ferromagnetic resonance imaging of an individual Ni81Fe19 disk using magnetic resonance force microscopy. J Appl Phys 109(7):07D313–07D313CrossRefGoogle Scholar
  209. 209.
    Pigeau B, Hahn C, De Loubens G, Naletov VV, Klein O, Mitsuzuka K, Montaigne F et al (2012) Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys Rev Lett 109(24):247602CrossRefGoogle Scholar
  210. 210.
    Mamin HJ, Budakian R, Chui BW, Rugar D (2003) Detection and manipulation of statistical polarization in small spin ensembles. Phys Rev Lett 91(20):207604CrossRefGoogle Scholar
  211. 211.
    Budakian R, Mamin HJ, Chui BW, Rugar D (2005) Creating order from random fluctuations in small spin ensembles. Science 307(5708):408–411CrossRefGoogle Scholar
  212. 212.
    Mamin HJ, Budakian R, Chui BW, Rugar D (2005) Magnetic resonance force microscopy of nuclear spins: detection and manipulation of statistical polarization. Phys Rev B 72(2):024413CrossRefGoogle Scholar
  213. 213.
    Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York 1999Google Scholar
  214. 214.
    Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719CrossRefGoogle Scholar
  215. 215.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89(12):5675–5679CrossRefGoogle Scholar
  216. 216.
    Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging, vol 1. Sinauer Associates, SunderlandGoogle Scholar
  217. 217.
    Ciobanu L, Seeber DA, Pennington CH (2002) 3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm. J Magn Reson 158(1):178–182CrossRefGoogle Scholar
  218. 218.
    Weiger M, Schmidig D, Denoth S, Massin C, Vincent F, Schenkel M, Fey M (2008) NMR microscopy with isotropic resolution of 3.0 μm using dedicated hardware and optimized methods. Conc Magn Reson Part B Magn Reson Eng 33(2):84–93CrossRefGoogle Scholar
  219. 219.
    Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2000) Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy. Phys Rev B 61(21):14694–14699CrossRefGoogle Scholar
  220. 220.
    Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2001) Magnetic resonance force microscopy quantum computer with tellurium donors in silicon. Phys Rev Lett 86(13):2894–2896CrossRefGoogle Scholar
  221. 221.
    Cerletti V, Coish WA, Gywat O, Loss D (2005) Recipes for spin-based quantum computing. Nanotechnology 16(4):R27CrossRefGoogle Scholar
  222. 222.
    Bruland KJ, Dougherty WM, Garbini JL, Sidles JA, Chao SH (1998) Force-detected magnetic resonance in a field gradient of 250 000 Tesla per meter. Appl Phys Lett 73(21):3159–3161CrossRefGoogle Scholar
  223. 223.
    Mamin HJ, Budakian R, Rugar D (2003) Superconducting microwave resonator for millikelvin magnetic resonance force microscopy. Rev Sci Instrum 74(5):2749–2753CrossRefGoogle Scholar
  224. 224.
    Poggio M, Degen CL, Rettner CT, Mamin HJ, Rugar D (2007) Nuclear magnetic resonance force microscopy with a microwire rf source. Appl Phys Lett 90(26):263111–263111CrossRefGoogle Scholar
  225. 225.
    Ascoli C, Baschieri P, Frediani C, Lenci L, Martinelli M, Alzetta G, Pardi L et al (1996) Micromechanical detection of magnetic resonance by angular momentum absorption. Appl Phys Lett 69(25):3920–3922CrossRefGoogle Scholar
  226. 226.
    Löhndorf M, Moreland J, Kabos P (2000) Ferromagnetic resonance detection with a torsion-mode atomic-force microscope. Appl Phys Lett 76(9):1176–1178CrossRefGoogle Scholar
  227. 227.
    Wilson KG (1975) Renormalization group methods. Adv Math 16(2):170–186CrossRefGoogle Scholar
  228. 228.
    Wilson KG (1975) The renormalization group: critical phenomena and the Kondo problem. Rev Mod Phys 47(4):773CrossRefGoogle Scholar
  229. 229.
    Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495CrossRefGoogle Scholar
  230. 230.
    Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418CrossRefGoogle Scholar
  231. 231.
    Lazo C, Caciuc V, Hölscher H, Heinze S (2008) Role of tip size, orientation, and structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. Phys Rev B 78(21):214416CrossRefGoogle Scholar
  232. 232.
    Lazo C, Heinze S (2011) First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys Rev B 84(14):144428CrossRefGoogle Scholar
  233. 233.
    Schwarz A, Kaiser U, Wiesendanger R (2009) Towards an understanding of the atomic scale magnetic contrast formation in NC-AFM: a tip material dependent MExFM study on NiO (001). Nanotechnology 20(26):264017CrossRefGoogle Scholar
  234. 234.
    Vedmedenko EY, Zhu Q, Kaiser U, Schwarz A, Wiesendanger R (2012) Atomic-scale magnetic dissipation from spin-dependent adhesion hysteresis. Phys Rev B 85(17):174410CrossRefGoogle Scholar
  235. 235.
    Pielmeier F, Giessibl FJ (2013) Spin resolution and evidence for superexchange on NiO (001) observed by force microscopy. Phys Rev Lett 110(26):266101CrossRefGoogle Scholar
  236. 236.
    Schmidt R, Lazo C, Holscher H, Pi UH, Caciuc V, Schwarz A, Wiesendanger R, Heinze S (2008) Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett 9(1):200–204CrossRefGoogle Scholar
  237. 237.
    Schmidt R, Lazo C, Kaiser U, Schwarz A, Heinze S, Wiesendanger R (2011) Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys Rev Lett 106(25):257202CrossRefGoogle Scholar
  238. 238.
    Schmidt R, Schwarz A, Wiesendanger R (2012) Magnetization switching utilizing the magnetic exchange interaction. Phys Rev B 86(17):174402CrossRefGoogle Scholar
  239. 239.
    Ness H, Gautier F (1995) Theoretical study of the interaction between a magnetic nanotip and a magnetic surface. Phys Rev B 52(10):7352CrossRefGoogle Scholar
  240. 240.
    Nakamura K, Hasegawa H, Oguchi T, Sueoka K, Hayakawa K, Mukasa K (1997) First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films. Phys Rev B 56(6):3218CrossRefGoogle Scholar
  241. 241.
    Foster AS, Shluger AL (2001) Spin-contrast in non-contact SFM on oxide surfaces: theoretical modelling of NiO (001) surface. Surf Sci 490(1):211–219CrossRefGoogle Scholar
  242. 242.
    Hölscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81:4428–4430CrossRefGoogle Scholar
  243. 243.
    Hoffmann R, Lantz MA, Hug HJ, Van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Güntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO (001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402CrossRefGoogle Scholar
  244. 244.
    Langkat SM, Hölscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO (001) surface by force field spectroscopy. Surf Sci 527(1):12–20CrossRefGoogle Scholar
  245. 245.
    Schwabl F (2005) Advanced quantum mechanics. Springer, Berlin/HeidelbergGoogle Scholar
  246. 246.
    Wieser R, Caciuc V, Lazo C, Hölscher H, Vedmedenko EY, Wiesendanger R (2013) A theoretical study of the dynamical switching of a single spin by exchange forces. New J Phys 15(1):013011CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stephan Block
    • 1
    • 2
  1. 1.Department of PhysicsErnst–Moritz–Arndt University of GreifswaldGreifswaldGermany
  2. 2.Applied Physics, Chalmers University of TechnologyGothenburgSweden

Personalised recommendations