Advertisement

Sofic-Dyck Shifts

  • Marie-Pierre Béal
  • Michel Blockelet
  • Cătălin Dima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Krieger and Matsumoto. The class of sofic-Dyck shifts is a particular class of shifts of sequences whose finite factors are unambiguous context-free languages. We show that it corresponds exactly to shifts of sequences whose set of factors is a visibly pushdown language. We give an expression of the zeta function of a sofic-Dyck shift which has a deterministic presentation.

Keywords

Zeta Function Inverse Semigroup Topological Entropy Label Graph Label Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 202–211. ACM, New York (2004) (electronic)Google Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)Google Scholar
  3. 3.
    Béal, M.-P., Blockelet, M., Dima, C.: Zeta function of finite-type Dyck shifts are ℕ-algebraic. In: Information Theory and Applications Workshop (2014)Google Scholar
  4. 4.
    Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and automata. Encyclopedia of Mathematics and its Applications, vol. 129. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  6. 6.
    Bowen, R.: Symbolic dynamics. In: On axiom A Diffeomorphism. CBMS Reg. Conf. American Mathematical Society, vol. (35) (1978)Google Scholar
  7. 7.
    Bowen, R., Lanford, O.: Zeta functions of restrictions of the shift transformation. In: Proc. Sympos. Pure Math., vol. 14, pp. 43–50. American Mathematical Society (1970)Google Scholar
  8. 8.
    Culik II, K., Yu, S.: Cellular automata, ωω-regular sets, and sofic systems. Discrete Appl. Math. 32(2), 85–101 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. J. Comput. Syst. Sci. 1(1), 1–23 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hamachi, T., Krieger, W.: On certain subshifts and their associated monoids. CoRR, abs/1202.5207 (2013)Google Scholar
  11. 11.
    Inoue, K.: The zeta function, periodic points and entropies of the Motzkin shift. CoRR, math/0602100 (2006)Google Scholar
  12. 12.
    Inoue, K., Krieger, W.: Subshifts from sofic shifts and Dyck shifts, zeta functions and topological entropy. CoRR, abs/1001 (2010)Google Scholar
  13. 13.
    Keller, G.: Circular codes, loop counting, and zeta-functions. J. Combin. Theory Ser. A 56(1), 75–83 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Krieger, W.: On subshift presentations. CoRR, abs/1209.2578 (2012)Google Scholar
  15. 15.
    Krieger, W., Matsumoto, K.: Zeta functions and topological entropy of the Markov-Dyck shifts. Münster J. Math. 4, 171–183 (2011)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)Google Scholar
  17. 17.
    Manning, A.: Axiom A diffeomorphisms have rationnal zeta fonctions. Bull. London Math. Soc. 3, 215–220 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Reutenauer, C.: ℕ-rationality of zeta functions. Adv. in Appl. Math. 18(1), 1–17 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Marie-Pierre Béal
    • 1
  • Michel Blockelet
    • 2
  • Cătălin Dima
    • 2
  1. 1.Université Paris-Est, LIGM UMR 8049Marne-la-Vallée Cedex 2France
  2. 2.Université Paris-Est, LACLCréteil CedexFrance

Personalised recommendations