Advertisement

The Monoid of Queue Actions

  • Martin Huschenbett
  • Dietrich Kuske
  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

We model the behavior of a fifo-queue as a monoid of transformations that are induced by sequences of writing and reading. We describe this monoid by means of a confluent and terminating semi-Thue system and study some of its basic algebraic properties such as conjugacy. Moreover, we show that while several properties concerning its rational subsets are undecidable, their uniform membership problem is NL-complete. Furthermore, we present an algebraic characterization of this monoid’s recognizable subsets. Finally, we prove that it is not Thurston-automatic.

Keywords

Normal Form Basic Action Cayley Graph Regular Language Free Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Transductions and context-free languages. Teubner Studienbücher, Stuttgart (1979)Google Scholar
  2. 2.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. ACM Transactions on Computer Systems 37(6), 641–674 (2004)zbMATHGoogle Scholar
  3. 3.
    Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semigroups. Theoretical Computer Science 250(1-2), 365–391 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cannon, J.W., Epstein, D.B.A., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Barlett Publ., Boston (1992)zbMATHGoogle Scholar
  5. 5.
    Choffrut, C.: Conjugacy in free inverse monoids. Int. J. Algebra Comput. 3(2), 169–188 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Duboc, C.: On some equations in free partially commutative monoids. Theoretical Computer Science 46, 159–174 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Duncan, A.J., Robertson, E.F., Ruškuc, N.: Automatic monoids and change of generators. Mathematical Proceedings of the Cambridge Philosophical Society 127, 403–409, 11 (1999)Google Scholar
  8. 8.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theoretical Computer Science 108, 45–82 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions. preprint arXiv:1404.5479 (2014)Google Scholar
  10. 10.
    Kambites, M.: Formal languages and groups as memory. Communications in Algebra 37, 193–208 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups. preprint arXiv:1107.3645 (2011)Google Scholar
  12. 12.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Lentin, A., Schützenberger, M.-P.: A combinatorial problem in the theory of free monoids. In: Combin. Math. Appl., Proc. Conf. Univ. North Carolina 1967, pp. 128–144 (1969)Google Scholar
  14. 14.
    Lohrey, M.: The rational subset membership problem for groups: A survey (2013) (to appear)Google Scholar
  15. 15.
    Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 17. Addison-Wesley (1983)Google Scholar
  16. 16.
    Osipova, V.A.: On the conjugacy problem in semigroups. Proc. Steklov Inst. Math. 133, 169–182 (1973)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Otto, F.: Conjugacy in monoids with a special Church-Rosser presentation is decidable. Semigroup Forum 29, 223–240 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, L.: Conjugacy in special monoids. J. of Algebra 143(2), 487–497 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Martin Huschenbett
    • 1
  • Dietrich Kuske
    • 1
  • Georg Zetzsche
    • 2
  1. 1.Institut für Theoretische InformatikTU IlmenauIlmenauGermany
  2. 2.Fachbereich InformatikTU KaiserslauternKaiserslauternGermany

Personalised recommendations