LaxF: Side Conditions and External Evidence as Monads

  • Furio Honsell
  • Luigi Liquori
  • Ivan Scagnetto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

We extend the constructive dependent type theory of the Logical Framework LF with a family of monads indexed by predicates over typed terms. These monads express the effect of factoring-out, postponing, or delegating to an external oracle the verification of a constraint or a side-condition. This new framework, called Lax Logical Framework, L ax F, is a conservative extension of LF, and hence it is the appropriate metalanguage for dealing formally with side-conditions or external evidence in logical systems. L ax F is the natural strengthening of LF p (the extension of LF introduced by the authors together with Marina Lenisa and Petar Maksimovic), which arises once the monadic nature of the lock constructors of LF p is fully exploited. The nature of these monads allows to utilize the unlock destructor instead of Moggi’s monadic let T , thus simplifying the equational theory. The rules for the unlock allow us, furthermore, to remove the monadic constructor once the constraint is satisfied. By way of example we discuss the encodings in L ax F of call-by-value λ-calculus, Hoare’s Logic, and Elementary Affine Logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, H.: Traktat über kritische Vernunft. J.C.B. Mohr (Paul Siebeckggu), Tübingen (1991)Google Scholar
  2. 2.
    Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke Semantics for Constructive S4 Modal Logic. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 292–307. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Baillot, P., Coppola, P., Lago, U.D.: Light logics and optimal reduction: Completeness and complexity. In: Proc. LICS, pp. 421–430. IEEE Computer Society (2007)Google Scholar
  4. 4.
    Barendregt, H.: Lambda Calculus: Its Syntax and Semantics. North Holland (1984)Google Scholar
  5. 5.
    Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. Journal of Automated Reasoning 28, 321–336 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Barthe, G., Cirstea, H., Kirchner, C., Liquori, L.: Pure Pattern Type Systems. In: Proc. POPL 2003, pp. 250–261. The ACM Press (2003)Google Scholar
  7. 7.
    Carroll, L.: What the Tortoise Said to Achilles. Mind 4, 278–280 (1895)CrossRefGoogle Scholar
  8. 8.
    Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-Pi-calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fairtlough, M., Mendler, M.: Propositional lax logic. Information and Computation 137(1), 1–33 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Fairtlough, M., Mendler, M., Cheng, X.: Abstraction and refinement in higher-order logic. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 201–216. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Fairtlough, M., Mendler, M., Walton, M.: First-order Lax Logic as a Framework for Constraint Logic Programming. Tech. Rep., University of Passau (1997)Google Scholar
  12. 12.
    Garg, D., Tschantz, M.C.: From indexed lax logic to intuitionistic logic. Tech. Rep., DTIC Document (2008)Google Scholar
  13. 13.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the ACM 40(1), 143–184 (1993)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hirschkoff, D.: A full formalisation of π-calculus theory in the calculus of constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Honsell, F.: 25 years of formal proof cultures: Some problems, some philosophy, bright future. In: Proc. LFMTP 2013, pp. 37–42. ACM, New York (2013)Google Scholar
  16. 16.
    Honsell, F., Lenisa, M.: Semantical analysis of perpetual strategies in λ-calculus. Theoretical Computer Science 212(1), 183–209 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Honsell, F., Lenisa, M., Liquori, L.: A Framework for Defining Logical Frameworks. v. in Honor of G. Plotkin. ENTCS 172, 399–436 (2007)MathSciNetGoogle Scholar
  18. 18.
    Honsell, F., Lenisa, M., Liquori, L., Maksimovic, P., Scagnetto, I.: An Open Logical Framework. Journal of Logic and Computation (October 2013)Google Scholar
  19. 19.
    Honsell, F., Lenisa, M., Goel, G., Scagnetto, I.: A Conditional Logical Framework. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 143–157. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Honsell, F., Miculan, M., Scagnetto, I.: π-calculus in (Co)Inductive Type Theories. Theoretical Computer Science 253(2), 239–285 (2001)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Mendler, M.: Constrained proofs: A logic for dealing with behavioral constraints in formal hardware verification. In: Proc. Designing Correct Circuits, pp. 1–28. Springer (1991)Google Scholar
  22. 22.
    Moggi, E.: The partial lambda calculus. PhD thesis, University of Edinburgh. College of Science and Engineering. School of Informatics (1988)Google Scholar
  23. 23.
    Nanevski, A., Pfenning, F., Pientka, B.: Contextual Modal Type Theory. ACM Transactions on Computational Logic 9(3) (2008)Google Scholar
  24. 24.
    Pfenning, F., Schürmann, C.: System description: Twelf – a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts. In: Proc. PPDP 2008, pp. 163–173. ACM (2008)Google Scholar
  26. 26.
    Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A Concurrent Logical Framework I: Judgments and Properties. Tech. Rep. CMU-CS-02-101, CMU (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Furio Honsell
    • 1
  • Luigi Liquori
    • 2
  • Ivan Scagnetto
    • 1
  1. 1.Università di UdineItaly
  2. 2.INRIA, Sophia Antipolis MéditerranéeFrance

Personalised recommendations