Advertisement

Monadic Second-Order Logic with Arbitrary Monadic Predicates

  • Nathanaël Fijalkow
  • Charles Paperman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate.

We give three applications. The first two are to give simple proofs of the Straubing and Crane Beach Conjectures for monadic predicates, and the third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.

Keywords

Regular Language Predicate Symbol Circuit Complexity Boolean Circuit Substitution Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences 38(1), 150–164 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages in NC1. Journal of Computer and System Sciences 44(3), 478–499 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.: First-order expressibility of languages with neutral letters or: The Crane Beach conjecture. Journal of Computer and System Sciences 70(2), 101–127 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. Journal of the Association for Computing Machinery 35(4), 941–952 (1988)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings of the 1st International Congress of Logic, Methodology, and Philosophy of Science, CLMPS 1960, pp. 1–11. Stanford University Press (1962)Google Scholar
  6. 6.
    Carton, O., Thomas, W.: The monadic theory of morphic infinite words and generalizations. Information and Computation 176(1), 51–65 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dekking, F.M.: Iteration of maps by an automaton. Discrete Mathematics 126(1-3), 81–86 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Durand, F.: Decidability of the HD0L ultimate periodicity problem. RAIRO Theor. Inform. Appl. 47(2), 201–214 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic 31(2), 169–181 (1966)CrossRefzbMATHGoogle Scholar
  10. 10.
    Immerman, N.: Languages that capture complexity classes. SIAM Journal of Computing 16(4), 760–778 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit Lower Bounds via Ehrenfeucht-Fraissé Games. In: IEEE Conference on Computational Complexity, pp. 190–201 (2006)Google Scholar
  12. 12.
    Kruckman, A., Rubin, S., Sheridan, J., Zax, B.: A myhill-nerode theorem for automata with advice. In: Faella, M., Murano, A. (eds.) GandALF. EPTCS, vol. 96, pp. 238–246 (2012)Google Scholar
  13. 13.
    Nies, A.: Describing groups. Bulletin of Symbolic Logic 13, 305–339, 9 (2007)Google Scholar
  14. 14.
    Péladeau, P.: Logically defined subsets of ℕk. Theoretical Computer Science 93(2), 169–183 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rabinovich, A.: On decidability of monadic logic of order over the naturals extended by monadic predicates. Information and Computation 205(6), 870–889 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rabinovich, A.: The Church problem for expansions of (ℕ, <) by unary predicates. Information and Computation 218, 1–16 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Schweikardt, N.: On the Expressive Power of First-Order Logic with Built-In Predicates. PhD thesis, Gutenberg-Universtät in Mainz (2001)Google Scholar
  19. 19.
    Semenov, A.L.: Decidability of monadic theories. In: Chytil, M., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)Google Scholar
  20. 20.
    Straubing, H.: Finite automata, formal logic, and circuit complexity. Birkhäuser Boston Inc., Boston (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Nathanaël Fijalkow
    • 1
    • 2
  • Charles Paperman
    • 1
  1. 1.LIAFAParis 7France
  2. 2.University of WarsawPoland

Personalised recommendations