Advertisement

Size-Change Abstraction and Max-Plus Automata

  • Thomas Colcombet
  • Laure Daviaud
  • Florian Zuleger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

Max-plus automata (over ℕ ∪ − ∞) are finite devices that map input words to non-negative integers or − ∞. In this paper we present (a) an algorithm allowing to compute the asymptotic behaviour of max-plus automata, and (b) an application of this technique to the evaluation of the computational time complexity of programs.

Keywords

Weighted Matrice Asymptotic Order Computational Time Complexity Weighted Automaton Boolean Semiring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Amram, A.M., Vainer, M.: Bounded termination of monotonicity-constraint transition systems. CoRR, abs/1202.4281 (2012)Google Scholar
  2. 2.
    Colcombet, T., Daviaud, L.: Approximate comparison of distance automata. In: STACS, pp. 574–585 (2013)Google Scholar
  3. 3.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)Google Scholar
  4. 4.
    Hashiguchi, K.: Limitedness theorem on finite automata with distance functions. J. Comput. Syst. Sci. 24(2), 233–244 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra Comput. 4(3), 405–425 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  7. 7.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Simon, I.: Factorization forests of finite height. Theoretical Computer Science 72, 65–94 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Simon, I.: The nondeterministic complexity of a finite automaton. In: Mots. Lang. Raison. Calc., pp. 384–400. Hermès, Paris (1990)Google Scholar
  11. 11.
    Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Colcombet
    • 1
  • Laure Daviaud
    • 1
  • Florian Zuleger
    • 2
  1. 1.LIAFA, CNRS, Université Paris DiderotParisFrance
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations