Size-Change Abstraction and Max-Plus Automata

  • Thomas Colcombet
  • Laure Daviaud
  • Florian Zuleger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

Max-plus automata (over ℕ ∪ − ∞) are finite devices that map input words to non-negative integers or − ∞. In this paper we present (a) an algorithm allowing to compute the asymptotic behaviour of max-plus automata, and (b) an application of this technique to the evaluation of the computational time complexity of programs.

References

  1. 1.
    Ben-Amram, A.M., Vainer, M.: Bounded termination of monotonicity-constraint transition systems. CoRR, abs/1202.4281 (2012)Google Scholar
  2. 2.
    Colcombet, T., Daviaud, L.: Approximate comparison of distance automata. In: STACS, pp. 574–585 (2013)Google Scholar
  3. 3.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)Google Scholar
  4. 4.
    Hashiguchi, K.: Limitedness theorem on finite automata with distance functions. J. Comput. Syst. Sci. 24(2), 233–244 (1982)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra Comput. 4(3), 405–425 (1994)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  7. 7.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Simon, I.: Factorization forests of finite height. Theoretical Computer Science 72, 65–94 (1990)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Simon, I.: The nondeterministic complexity of a finite automaton. In: Mots. Lang. Raison. Calc., pp. 384–400. Hermès, Paris (1990)Google Scholar
  11. 11.
    Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Colcombet
    • 1
  • Laure Daviaud
    • 1
  • Florian Zuleger
    • 2
  1. 1.LIAFA, CNRS, Université Paris DiderotParisFrance
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations