Classifying Recognizable Infinitary Trace Languages Using Word Automata

  • Namit Chaturvedi
  • Marcus Gelderie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)


We address the problem of providing a Borel-like classification of languages of infinite Mazurkiewicz traces, and provide a solution in the framework of ω-automata over infinite words – which is invoked via the sets of linearizations of infinitary trace languages. We identify trace languages whose linearizations are recognized by deterministic weak or deterministic Büchi (word) automata. We present a characterization of the class of linearizations of all recognizable ω-trace languages in terms of Muller (word) automata. Finally, we show that the linearization of any recognizable ω-trace language can be expressed as a Boolean combination of languages recognized by our class of deterministic Büchi automata.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaturvedi, N.: Toward a Structure Theory of Regular Infinitary Trace Languages. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 134–145. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Diekert, V., Muscholl, A.: Deterministic Asynchronous Automata for Infinite Traces. Acta Informatica 31(4), 379–397 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)Google Scholar
  4. 4.
    Gastin, P., Petit, A.: Asynchronous Cellular Automata for Infinite Traces. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 583–594. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Madhavan, M.: Automata on Distributed Alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. IISc Research Monographs Series, vol. 2, pp. 257–288. World Scientific (May 2012)Google Scholar
  7. 7.
    Mazurkiewicz, A.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Muscholl, A.: Über die Erkennbarkeit unendlicher Spuren. PhD thesis (1994)Google Scholar
  9. 9.
    Perrinand., D., Pin, J.-É.: Automata and Infinite Words. In: Infinite Words: Automata, Semigroups, Logic and Games. Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  10. 10.
    Staiger, L.: Subspaces of GF(q)ω and Convolutional Codes. Information and Control 59(1-3), 148–183 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Zielonka, W.: Notes on Finite Asynchronous Automata. R.A.I.R.O. – Informatique Théorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Namit Chaturvedi
    • 1
  • Marcus Gelderie
    • 1
  1. 1.Lehrstuhl für Informatik 7RWTH Aachen UniveristyAachenGermany

Personalised recommendations