Advertisement

Classifying Recognizable Infinitary Trace Languages Using Word Automata

  • Namit Chaturvedi
  • Marcus Gelderie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8634)

Abstract

We address the problem of providing a Borel-like classification of languages of infinite Mazurkiewicz traces, and provide a solution in the framework of ω-automata over infinite words – which is invoked via the sets of linearizations of infinitary trace languages. We identify trace languages whose linearizations are recognized by deterministic weak or deterministic Büchi (word) automata. We present a characterization of the class of linearizations of all recognizable ω-trace languages in terms of Muller (word) automata. Finally, we show that the linearization of any recognizable ω-trace language can be expressed as a Boolean combination of languages recognized by our class of deterministic Büchi automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaturvedi, N.: Toward a Structure Theory of Regular Infinitary Trace Languages. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 134–145. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Diekert, V., Muscholl, A.: Deterministic Asynchronous Automata for Infinite Traces. Acta Informatica 31(4), 379–397 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)Google Scholar
  4. 4.
    Gastin, P., Petit, A.: Asynchronous Cellular Automata for Infinite Traces. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 583–594. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Processing Letters 79(3), 105–109 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Madhavan, M.: Automata on Distributed Alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. IISc Research Monographs Series, vol. 2, pp. 257–288. World Scientific (May 2012)Google Scholar
  7. 7.
    Mazurkiewicz, A.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Muscholl, A.: Über die Erkennbarkeit unendlicher Spuren. PhD thesis (1994)Google Scholar
  9. 9.
    Perrinand., D., Pin, J.-É.: Automata and Infinite Words. In: Infinite Words: Automata, Semigroups, Logic and Games. Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  10. 10.
    Staiger, L.: Subspaces of GF(q)ω and Convolutional Codes. Information and Control 59(1-3), 148–183 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Zielonka, W.: Notes on Finite Asynchronous Automata. R.A.I.R.O. – Informatique Théorique et Applications 21, 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Namit Chaturvedi
    • 1
  • Marcus Gelderie
    • 1
  1. 1.Lehrstuhl für Informatik 7RWTH Aachen UniveristyAachenGermany

Personalised recommendations