Ground Truth Acquisition of Humanoid Soccer Robot Behaviour

  • Andrea Pennisi
  • Domenico D. Bloisi
  • Luca Iocchi
  • Daniele Nardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

In this paper an open source software for monitoring humanoid soccer robot behaviours is presented. The software is part of an easy to set up system, conceived for registering ground truth data that can be used for evaluating and testing methods such as robot coordination and localization. The hardware architecture of the system is designed for using multiple low-cost visual sensors (four Kinects). The software includes a foreground computation module and a detection unit for both players and ball. A graphical user interface has been developed in order to facilitate the creation of a shared multi-camera plan view, in which the observations of players and ball are re-projected to obtain global positions. The effectiveness of the implemented system has been proven using a laser sensor to measure the exact position of the objects of interest in the field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloisi, D., Iocchi, L.: Independent Multimodal Background Subtraction. In: CompIMAGE, pp. 39–44 (2012)Google Scholar
  2. 2.
    Bloisi, D.D., Iocchi, L.: ARGOS - A Video Surveillance System for Boat Traffic Monitoring in Venice. IJPRAI 23(7), 1477–1502 (2009)Google Scholar
  3. 3.
    Bloisi, D.D., Iocchi, L., Monekosso, D.N., Remagnino, P.: A Novel Segmentation Method for Crowded Scenes. In: VISAPP, pp. 484–489 (2009)Google Scholar
  4. 4.
    De Morais, F.E., Goldenstein, S., Roch, A.: Automatic Localization of Indoor Soccer Players from Multiple Cameras. In: VISAPP, 205–212 (2012)Google Scholar
  5. 5.
    Khandelwal, P., Stone, P.: A Low Cost Ground Truth Detection System Using the Kinect. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 515–527. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Li, X., Lu, H., Xiong, D., Zhang, H., Zheng, Z.: A Survey on Visual Perception for RoboCup MSL Soccer Robots. Int. J. Adv. Robotic Sy. 10, 1–10 (2013)Google Scholar
  7. 7.
    Microsoft Corp. Redmond WA: Kinect for Xbox 360Google Scholar
  8. 8.
  9. 9.
    Niemüller, T., Ferrein, A., Eckel, G., Pirro, D., Podbregar, P., Kellner, T., Rath, C., Steinbauer, G.: Providing Ground-truth Data for the Nao Robot Platform. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 133–144. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    RoboCup Technical Committee: RoboCup Standard Platform League (Nao) Rule Book, http://www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf
  11. 11.
    Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Articial Intelligence (KI - Kuenstliche Intelligenz) (2010)Google Scholar
  12. 12.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The Shared Vision System for the RoboCup Small Size League. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrea Pennisi
    • 1
  • Domenico D. Bloisi
    • 1
  • Luca Iocchi
    • 1
  • Daniele Nardi
    • 1
  1. 1.Dept. of Computer, Control, and Management EngineeringSapienza University of RomeRomeItaly

Personalised recommendations