A System for Building Semantic Maps of Indoor Environments Exploiting the Concept of Building Typology

  • Matteo Luperto
  • Alberto Quattrini Li
  • Francesco Amigoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


Semantic mapping of indoor environments refers to the task of building representations of these environments that associate spatial concepts with spatial entities. In particular, semantic labels, like ‘rooms’ and ‘corridors’ are associated to portions of an underlying metric map, to allow robots or humans to exploit this additional knowledge. Usually, the classifiers that build semantic maps process data coming from laser range scanners and cameras and do not consider the specific type of the mapped building. However, in architecture it is well known that each building has a specific typology. The concept of building typology denotes the set of buildings that have the same function (e.g., being a school building) and that share the same structural features. In this paper, we exploit the concept of building typology to build semantic maps of indoor environments. The proposed system uses only data from laser range scanners and creates a specific classifier for each building typology, showing good classification accuracy.


semantic mapping building typology line segment maps 


  1. 1.
    Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proc. IROS, pp. 637–642 (2002)Google Scholar
  2. 2.
    Pronobis, A., Mozos, O., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. Int. J. Robot. Res. 29(2-3), 298–320 (2010)Google Scholar
  3. 3.
    Rossi, A.: The architecture of the city. MIT Press (1984)Google Scholar
  4. 4.
    Pronobis, A.: Semantic mapping with mobile robots. PhD thesis. KTH (2011)Google Scholar
  5. 5.
    Althaus, P., Christensen, H.: Behavior coordination in structured environments. Adv. Robotics 17(7), 657–674 (2003)CrossRefGoogle Scholar
  6. 6.
    Mozos, O., Stachniss, C., Burgard, W.: Supervised learning of places from range data using AdaBoost. In: Proc. ICRA, pp. 1730–1735 (2005)Google Scholar
  7. 7.
    Mozos, O., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. Robot. Auton. Syst. 55(5), 391–402 (2007)Google Scholar
  8. 8.
    Topp, E., Christensen, H.: Topological modelling for human augmented mapping. In: Proc. IROS, pp. 2257–2263 (2006)Google Scholar
  9. 9.
    Friedman, S., Pasula, H., Fox, D.: Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proc. IJCAI, pp. 2109–2114 (2007)Google Scholar
  10. 10.
    Wolf, D., Sukhatme, G.: Semantic mapping using mobile robots. IEEE T. Robot. 24(2), 245–258 (2008)CrossRefGoogle Scholar
  11. 11.
    Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proc. CVPR, pp. 413–420 (2009)Google Scholar
  12. 12.
    Zender, H., Mozos, O., Jensfelt, P., Kruijff, G., Burgard, W.: Conceptual spatial representations for indoor mobile robots. Robot. Auton. Syst. 56(6), 493–502 (2008)CrossRefGoogle Scholar
  13. 13.
    Lynch, K.: The image of the city. MIT Press (1960)Google Scholar
  14. 14.
    Neufert, E., Neufert, P.: Architects’ data. Wiley-Blackwell (2012)Google Scholar
  15. 15.
    Bishop, C.: Pattern recognition and machine learning. Springer (2006)Google Scholar
  16. 16.
    Perkins, B.: Building type basics for elementary and secondary schools. Wiley (2001)Google Scholar
  17. 17.
    Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d range data for indoor mobile robotics. Auton. Robot. 23(2), 97–111 (2007)CrossRefGoogle Scholar
  18. 18.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)CrossRefGoogle Scholar
  19. 19.
    Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: Proc. ICRA (2004)Google Scholar
  20. 20.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A robot simulator for research and education. In: Proc. ICRA, pp. 1400–1405 (2007)Google Scholar
  21. 21.
    OpenCV: OpenCV (2012),
  22. 22.
    RapidMiner: RapidMiner (2012),
  23. 23.
    Howard, A., Roy, N.: The robotics data set repository (Radish) (2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matteo Luperto
    • 1
  • Alberto Quattrini Li
    • 1
  • Francesco Amigoni
    • 1
  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations