Advertisement

Modification of Foot Placement for Balancing Using a Preview Controller Based Humanoid Walking Algorithm

  • Oliver Urbann
  • Matthias Hofmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

Lunges are an important utility to regain balance under strong perturbed biped walking motions. This paper presents a method to calculate the modifications of predefined foot placements with the objective to minimize deviations of the Zero Moment Point from a reference. The modification can be distributed over different points in time to execute smaller lunges, and an arbitrary point in time can be chosen. The calculation is in closed-form, and is embedded into a well-evaluated preview controller with observer based on the 3D Linear Inverted Pendulum Mode (3D-LIPM).

Keywords

3D-LIPM ZMP observer humanoid robot reactive stepping walking algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vukobratović, M., Borovac, B.: Zero-moment point – Thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)CrossRefGoogle Scholar
  2. 2.
    Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 239–246 (2001)Google Scholar
  3. 3.
    Kim, J.H.: Walking pattern generation of a biped walking robot using convolution sum. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, November 29-December 1, pp. 539–544 (2007)Google Scholar
  4. 4.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method for real-time gait planning for humanoid robots. International Journal of Humanoid Robotics 3(01), 1–19 (2006)CrossRefGoogle Scholar
  5. 5.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: ICRA, pp. 1620–1626. IEEE (2003)Google Scholar
  6. 6.
    Czarnetzki, S., Kerner, S., Urbann, O.: Applying dynamic walking control for biped robots. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 69–80. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems 57(8), 839–845 (2009)CrossRefGoogle Scholar
  8. 8.
    Urbann, O., Tasse, S.: Observer based biped walking control, a sensor fusion approach. Autonomous Robots, 1–13 (2013)Google Scholar
  9. 9.
    Alcaraz-Jiménez, J.J., Missura, M., Martínez-Barberá, H., Behnke, S.: Lateral disturbance rejection for the nao robot. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 1–12. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., Inaba, M.: Online decision of foot placement using singular lq preview regulation. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 13–18 (October 2011)Google Scholar
  11. 11.
    Pratt, J.E., Carff, J., Drakunov, S.V., Goswami, A.: Capture point: A step toward humanoid push recovery. In: Humanoids, pp. 200–207. IEEE (2006)Google Scholar
  12. 12.
    Englsberger, J., Ott, C., Roa, M., Albu-Schaffer, A., Hirzinger, G.: Bipedal walking control based on capture point dynamics. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4420–4427 (September 2011)Google Scholar
  13. 13.
    Yun, S.K., Goswami, A.: Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3943–3950 (September 2011)Google Scholar
  14. 14.
    van Zutven, P., Kostic, D., Nijmeijer, H.: Foot placement for planar bipeds with point feet. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 983–988 (May 2012)Google Scholar
  15. 15.
    Herdt, A., Diedam, H., Wieber, P.B., Dimitrov, D., Mombaur, K., Diehl, M.: Online walking motion generation with automatic footstep placement. Advanced Robotics 24(5-6), 719–737 (2010)CrossRefGoogle Scholar
  16. 16.
    Morisawa, M., Harada, K., Kajita, S., Kaneko, K., Sola, J., Yoshida, E., Mansard, N., Yokoi, K., Laumond, J.P.: Reactive stepping to prevent falling for humanoids. In: 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2009, pp. 528–534 (December 2009)Google Scholar
  17. 17.
    Morisawa, M., Kanehiro, F., Kaneko, K., Mansard, N., Sola, J., Yoshida, E., Yokoi, K., Laumond, J.: Combining suppression of the disturbance and reactive stepping for recovering balance. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3150–3156 (October 2010)Google Scholar
  18. 18.
    Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control 41(3), 677–699 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Laue, T., Spiess, K., Röfer, T.: SimRobot - A General Physical Robot Simulator and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006), http://www.springer.de/ Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oliver Urbann
    • 1
  • Matthias Hofmann
    • 1
  1. 1.Robotics Research Institute, Section Information TechnologyTU Dortmund UniversityDortmundGermany

Personalised recommendations