On Unification of QBF Resolution-Based Calculi

  • Olaf Beyersdorff
  • Leroy Chew
  • Mikoláš Janota
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

Abstract

Several calculi for quantified Boolean formulas (QBFs) exist, but relations between them are not yet fully understood. This paper defines a novel calculus, which is resolution-based and enables unification of the principal existing resolution-based QBF calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based calculus ∀Exp+Res. All these calculi play an important role in QBF solving. This paper shows simulation results for the new calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for the universal player from proofs in the calculus. We believe that this new proof system provides an underpinning necessary for formal analysis of modern QBF solvers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  2. 2.
    Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)MATHMathSciNetGoogle Scholar
  3. 3.
    Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1-4), 133–191 (2008)MathSciNetGoogle Scholar
  5. 5.
    Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic 163(7), 906–917 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that characterize DLL algorithms with clause learning. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  8. 8.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. JAIR 26(1), 371–416 (2006)MATHMathSciNetGoogle Scholar
  12. 12.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)Google Scholar
  13. 13.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: IJCAI (2011)Google Scholar
  14. 14.
    Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively p-simulate general propositional resolution. In: AAAI (2008)Google Scholar
  15. 15.
    Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Janota, M., Marques-Silva, J.: ∀Exp+Res does not P-Simulate Q-resolution. In: International Workshop on Quantified Boolean Formulas (2013)Google Scholar
  18. 18.
    Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)Google Scholar
  20. 20.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Kleine Büning, H., Subramani, K., Zhao, X.: Boolean functions as models for quantified boolean formulas. J. Autom. Reasoning 39(1), 49–75 (2007)CrossRefMATHGoogle Scholar
  22. 22.
    Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free variables. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Krajíček, J., Pudlák, P.: Quantified propositional calculi and fragments of bounded arithmetic. Mathematical Logic Quarterly 36(1), 29–46 (1990)CrossRefMATHGoogle Scholar
  25. 25.
    Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, IOS Press (2009)Google Scholar
  26. 26.
    Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: AAAI, pp. 1045–1050. AAAI Press (2007)Google Scholar
  28. 28.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)CrossRefMATHGoogle Scholar
  29. 29.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Slivovsky, F., Szeider, S.: Variable dependencies and Q-Resolution. In: International Workshop on Quantified Boolean Formulas (2013)Google Scholar
  31. 31.
    Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD, pp. 442–449 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Leroy Chew
    • 1
  • Mikoláš Janota
    • 2
  1. 1.School of ComputingUniversity of LeedsUnited Kingdom
  2. 2.INESC-IDLisbonPortugal

Personalised recommendations