Parameterized Approximations via d-Skew-Symmetric Multicut

  • Sudeshna Kolay
  • Pranabendu Misra
  • M. S. Ramanujan
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)


In this paper we design polynomial time approximation algorithms for several parameterized problems such as Odd Cycle Transversal, Almost 2-SAT, Above Guarantee Vertex Cover and Deletion q-Horn Backdoor Set Detection. Our algorithm proceeds by first reducing the given instance to an instance of the d-Skew-Symmetric Multicut problem, and then computing an approximate solution to this instance. Our algorithm runs in polynomial time and returns a solution whose size is bounded quadratically in the parameter, which in this case is the solution size, thus making it useful as a first step in the design of kernelization algorithms. Our algorithm relies on the properties of a combinatorial object called (L,k)-set, which builds on the notion of (L,k)-components, defined by a subset of the authors to design a linear time FPT algorithm for Odd Cycle Transversal. The main motivation behind the introduction of this object in their work was to replicate in skew-symmetric graphs, the properties of important separators introduced by Marx [2006] which has played a very significant role in several recent parameterized tractability results. Combined with the algorithm of Reed, Smith and Vetta, our algorithm also gives an alternate linear time algorithm for Odd Cycle Transversal. Furthermore, our algorithm significantly improves upon the running time of the earlier parameterized approximation algorithm for Deletion q-Horn Backdoor Set Detection which had an exponential dependence on the parameter; albeit at a small cost in the approximation ratio.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: \(O(\sqrt{\log n})\) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In: STOC, pp. 573–581 (2005)Google Scholar
  2. 2.
    Chekuri, C., Sidiropoulos, A.: Approximation algorithms for euler genus and related problems. In: FOCS, pp. 167–176 (2013)Google Scholar
  3. 3.
    Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge planarization. In: Randall, D. (ed.) SODA, pp. 1050–1069. SIAM (2011)Google Scholar
  4. 4.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. Math. 8, 399–404 (1956)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gaspers, S., Ordyniak, S., Ramanujan, M.S., Saurabh, S., Szeider, S.: Backdoors to q-horn. In: STACS, pp. 67–79 (2013)Google Scholar
  7. 7.
    Goldberg, A.V., Karzanov, A.V.: Path problems in skew-symmetric graphs. Combinatorica 16(3), 353–382 (1996)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Math. Program. 100(3), 537–568 (2004)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Grohe, M., Grüber, M.: Parameterized approximability of the disjoint cycle problem. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 363–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Hlinený, P., Oum, S.I.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Iwata, Y., Oka, K., Yoshida, Y.: Linear-time fpt algorithms via network flow. In: SODA, pp. 1749–1761 (2014)Google Scholar
  12. 12.
    Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization. In: FOCS, pp. 450–459 (2012)Google Scholar
  13. 13.
    Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-symmetric multicuts. In: SODA, pp. 1739–1748 (2014)Google Scholar
  15. 15.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Tutte, W.T.: Antisymmetrical digraphs. Canadian J. Math. 19, 1101–1117 (1967)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sudeshna Kolay
    • 1
  • Pranabendu Misra
    • 1
  • M. S. Ramanujan
    • 2
  • Saket Saurabh
    • 1
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.University of BergenBergenNorway

Personalised recommendations