On the Complexity of List Ranking in the Parallel External Memory Model

  • Riko Jacob
  • Tobias Lieber
  • Nodari Sitchinava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8635)

Abstract

We study the problem of list ranking in the parallel external memory (PEM) model. We observe an interesting dual nature for the hardness of the problem due to limited information exchange among the processors about the structure of the list, on the one hand, and its close relationship to the problem of permuting data, which is known to be hard for the external memory models, on the other hand.

By carefully defining the power of the computational model, we prove a permuting lower bound in the PEM model. Furthermore, we present a stronger Ω(log2N) lower bound for a special variant of the problem and for a specific range of the model parameters, which takes us a step closer toward proving a non-trivial lower bound for the list ranking problem in the bulk-synchronous parallel (BSP) and MapReduce models. Finally, we also present an algorithm that is tight for a larger range of parameters of the model than in prior work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyllie, J.: The Complexity of Parallel Computation. PhD thesis, Cornell University (1979)Google Scholar
  2. 2.
    Anderson, R.J., Miller, G.L.: Deterministic parallel list ranking. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 81–90. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  3. 3.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chiang, Y.J., Goodrich, M., Grove, E., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proceedings of SODA 1995, pp. 139–149 (1995)Google Scholar
  5. 5.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar
  6. 6.
    Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  7. 7.
    Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In: Charikar, M. (ed.) SODA, pp. 938–948. SIAM (2010)Google Scholar
  8. 8.
    Goodrich, M.: Communication-efficient parallel sorting. SIAM J. Comput. 29(2), 416–432 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Goodrich, M., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in the mapreduce framework. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Arge, L., Goodrich, M., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiprocessors. In: SPAA 2008, pp. 197–206 (2008)Google Scholar
  11. 11.
    Greiner, G.: Sparse Matrix Computations and their I/O Complexity. Dissertation, Technische Universität München, München (2012)Google Scholar
  12. 12.
    Karp, R.M., Ramachandran, V.: Handbook of theoretical computer science, pp. 869–941 (1990)Google Scholar
  13. 13.
    Vishkin, U.: Randomized speed-ups in parallel computation. In: STOC, pp. 230–239 (1984)Google Scholar
  14. 14.
    Arge, L., Goodrich, M., Sitchinava, N.: Parallel external memory graph algorithms. In: IPDPS, pp. 1–11. IEEE (2010)Google Scholar
  15. 15.
    Jacob, R., Lieber, T., Sitchinava, N.: On the complexity of list ranking in the parallel external memory model. CoRR abs/1406.3279 (2014)Google Scholar
  16. 16.
    Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity (extended abstract). In: FOCS, pp. 222–227. IEEE Computer Society (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Riko Jacob
    • 1
  • Tobias Lieber
    • 1
  • Nodari Sitchinava
    • 2
  1. 1.Institute for Theoretical Computer ScienceETH ZürichSwitzerland
  2. 2.Department of Information and Computer SciencesUniversity of HawaiiUSA

Personalised recommendations