Skip to main content

Lower Bounds for Splittings by Linear Combinations

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

Abstract

A typical DPLL algorithm for the Boolean satisfiability problem splits the input problem into two by assigning the two possible values to a variable; then it simplifies the two resulting formulas. In this paper we consider an extension of the DPLL paradigm. Our algorithms can split by an arbitrary linear combination of variables modulo two. These algorithms quickly solve formulas that explicitly encode linear systems modulo two, which were used for proving exponential lower bounds for conventional DPLL algorithms.

We prove exponential lower bounds on the running time of DPLL with splitting by linear combinations on 2-fold Tseitin formulas and on formulas that encode the pigeonhole principle.

Raz and Tzameret introduced a system R(lin) which operates with disjunctions of linear equalities with integer coefficients. We consider an extension of the resolution proof system that operates with disjunctions of linear equalities over \(\mathbb{F}_2\); we call this system Res-Lin. Res-Lin can be p-simulated in R(lin) but currently we do not know any superpolynomial lower bounds in R(lin). Tree-like proofs in Res-Lin are equivalent to the behavior of our algorithms on unsatisfiable instances. We prove that Res-Lin is implication complete and also prove that Res-Lin is polynomially equivalent to its semantic version.

The research is partially supported by the RFBR grant 14-01-00545, by the President’s grant MK-2813.2014.1 and by the Government of the Russia (grant 14.Z50.31.0030).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1-3), 51–72 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász-schrijver systems and beyond follow from multiparty communication complexity. SIAM Journal on Computing 37(3), 845–869 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple. Journal of ACM 48(2), 149–169 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

    MATH  MathSciNet  Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)

    MATH  MathSciNet  Google Scholar 

  6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    MATH  MathSciNet  Google Scholar 

  7. Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n − o(n) lower bound on the circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 256–265. Springer, Heidelberg (2011)

    Google Scholar 

  8. Itsykson, D., Sokolov, D.: The complexity of inversion of explicit goldreich’s function by DPLL algorithms. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 134–147. Springer, Heidelberg (2011)

    Google Scholar 

  9. Itsykson, D.: Lower bound on average-case complexity of inversion of goldreich’s function by drunken backtracking algorithms. Theory Comput. Syst. 54(2), 261–276 (2014)

    MathSciNet  Google Scholar 

  10. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

    MATH  Google Scholar 

  11. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  12. Raz, R., Tzameret, I.: Resolution over linear equations and multilinear proofs. Ann. Pure Appl. Logic 155(3), 194–224 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Razborov, A.A.: Pseudorandom generators hard for k-dnf resolution and polynomial calculus resolution. Technical report (2003)

    Google Scholar 

  14. Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for formulas over the full binary basis. Computational Complexity 22(2), 245–274 (2013)

    MATH  MathSciNet  Google Scholar 

  15. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski Nauchnykh Seminarov LOMI 8, 234–259 (1968); English translation of this volume: Consultants Bureau, N.Y., pp. 115–125 (1970)

    Google Scholar 

  16. Urquhart, A.: The depth of resolution proofs. Studia Logica 99(1-3), 249–364 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Itsykson, D., Sokolov, D. (2014). Lower Bounds for Splittings by Linear Combinations. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics